已知盒中有n個(gè)黑球和m個(gè)白球,連續(xù)不放回地從中隨機(jī)取球,每次取一個(gè),直至盒中無(wú)球,規(guī)定:第i次取球若取到黑球得2i,取到白球不得分,記隨機(jī)變量ξ為總的得分?jǐn)?shù).
(Ⅰ)當(dāng)n=m=2時(shí),求P(ξ=10);
(Ⅱ)若m=1,求隨機(jī)變量ξ的期望E(ξ).
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:綜合題,概率與統(tǒng)計(jì)
分析:(Ⅰ)當(dāng)n=m=2時(shí),ξ=10表示4次中,第1次和第3次取到黑球,即可求出概率;
(Ⅱ)當(dāng)m=1時(shí),隨機(jī)變量ξ的取值有:21+22+…+2n+1-2k,k=1,2,3,…,n+1,因?yàn)殡S機(jī)變量ξ的取值的概率為
1
n+1
,即可求隨機(jī)變量ξ的期望E(ξ).
解答: 解:(Ⅰ)當(dāng)n=m=2時(shí),ξ=10表示4次中,第1次和第3次取到黑球,
所以P(ξ=10)=
A
2
2
A
2
2
4!
=
1
6
;
(Ⅱ)當(dāng)m=1時(shí),隨機(jī)變量ξ的取值有:21+22+…+2n+1-2k,k=1,2,3,…,n+1,
即2n+2-2-2k,k=1,2,3,…,n+1,
因?yàn)殡S機(jī)變量ξ的取值的概率為
1
n+1
,
所以期望E(ξ)=
1
n+1
[(2n+2-2-2)+…+(2n+2-2-2n+1)]=
n(2n+2-2)
n+1
點(diǎn)評(píng):本題考查概率的計(jì)算,考查隨機(jī)變量ξ的期望E(ξ),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前項(xiàng)和為Sn,若a9=11,a11=9,則S19等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一簡(jiǎn)單組合體的三視圖如圖所示,則該組合體的體積為(  )
A、16-πB、12-4π
C、12-2πD、12-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A、
50
3
cm3
B、50cm3
C、
25
3
cm3
D、25cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A,B兩種元件,已知生產(chǎn)A元件的正品率為75%,生產(chǎn)B元件的正品率為80%,生產(chǎn)1個(gè)元件A,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個(gè)元件B,若是正品則盈利40元,若是次品則虧損5元.
(Ⅰ)求生產(chǎn)5個(gè)元件A所得利潤(rùn)不少于140元的概率;
(Ⅱ)設(shè)X為生產(chǎn)1個(gè)元件A和1個(gè)元件B所得總利潤(rùn),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用計(jì)算機(jī)產(chǎn)生0~3之間的均勻隨機(jī)數(shù)a,則事件“a2-3a+2<0”發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校對(duì)高一年級(jí)8個(gè)班參加合唱比賽的得分進(jìn)行了統(tǒng)計(jì),得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)和平均數(shù)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在1個(gè)單位長(zhǎng)度的線段AB上任取一點(diǎn)P,則點(diǎn)P到A、B兩點(diǎn)的距離都不小于
1
6
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且
AC
BC
=0,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得|QB|2-|QA|2=2?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.
(3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作⊙O:x2+y2=
4
3
的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
1
3m2
+
1
n2
為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案