已知平面α、β和直線m,給出條件:①m?α;②α∥β;③m∥α;④m⊥α;⑤α⊥β.由這五個(gè)條件中的兩個(gè)同時(shí)成立能推導(dǎo)出m∥β的是( 。
A、①⑤B、①②C、③⑤D、④⑤
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用面面平行的性質(zhì)即可得出結(jié)果.
解答: 解:∵m?α,α∥β,∴m∥β.
故①②⇒m∥β.
故選:B.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,熟練掌握面面平行的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
9
+
y2
5
=1上一點(diǎn),點(diǎn)M,N分別是兩圓:(x+2)2+y2=1和(x-2)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為
 
,
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R),且g(1)-g(-
1
2
)=f(0).
(1)試求b,c所滿足的關(guān)系式;
(2)若c=0時(shí),方程f(x)=g(x)在(0,+∞)內(nèi)有唯一解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax(a>0且a≠1),x∈R,設(shè)x1、x2∈R且x1≠x2,判斷
1
2
[f(x1)+f(x2)]與f(
x1+x2
2
)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:log327×92

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=-
1
8
x2的焦點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x2+a3x (ai∈R,i=0,1,2,3),當(dāng)x=-
2
2
時(shí),f (x)取得極大值
2
3
,并且函數(shù)y=f′(x)的圖象關(guān)于y軸對(duì)稱.
(1)求f (x)的表達(dá)式;
(2)試在函數(shù)f (x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在區(qū)間[-1,1]上;
(3)求證:|f(sinx)-f(cosx)|≤
2
2
3
(x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)在函數(shù)y=x2的圖象上,數(shù)列{bn}滿足bn=6n-1+2n+1(n≥2,n∈N*),且b1=a1+3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{
bn
2n
+1}是等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn}滿足對(duì)任意n∈N*,均有an+1=
c1
b1+2
+
c2
b2+22
+
c3
b2+23
+…+
cn
bn+2n
成立,求c1+c2+c3+…+c2010的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)f(x)=(m2-m-1)xm2+m-3在(0,+∞)上為增函數(shù),則m=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案