【題目】已知函數(shù)f(x)=alnx﹣x+1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若對任意x∈(0,+∞),都有f(x)≤0,求實數(shù)a的取值范圍;
(Ⅲ)證明 (其中n∈N* , e為自然對數(shù)的底數(shù)).

【答案】(Ⅰ)解: ,定義域(0,+∞),
當a≤0時,f'(x)<0,∴f(x)在(0,+∞)上遞減;
當a>0時,令f'(x)=0,得x=a,此時f'(x),f(x)隨的變化情況如下表:

x

(0,a)

a

(a,+∞)

f'(x)

+

0

f(x)

極大值

∴f(x)的單調增區(qū)間為(0,a),單調減區(qū)間為(a,+∞).
綜上,當a≤0時,f(x)的遞減區(qū)間為(0,+∞);此時無增區(qū)間;
當a>0時,f(x)的單調增區(qū)間為(0,a),單調減區(qū)間為(a,+∞);
(Ⅱ)解:由題意得f(x)max≤0,
當a≤0時,f(x)在(0,+∞)上遞減, ,不合題意;
當a>0時,f(x)的單調增區(qū)間為(0,a),單調減區(qū)間為(a,+∞),∴f(x)max=f(a),
∴f(a)=alna﹣a+1≤0,令g(x)=xlnx﹣x+1(x>0),則g'(x)=lnx,
因此,g(x)在(0,1)上遞減,在(1,+∞)上遞增,∴g(x)min=g(1)=0,
∴alna﹣a+1≤0的解只有a=1.
綜上得:實數(shù)a的取值集合為{1};
(Ⅲ)證明:要證不等式 ,
兩邊取對數(shù)后得 ,
即證 ,
,則只要證 ,
由(Ⅰ)中的單調性知當a=1時,f(x)=lnx﹣x+1在(1,2]上遞減,因此f(x)>f(1),
即lnx﹣x+1<0,∴l(xiāng)nx<x﹣1(1<x≤2)
,則 ,∴φ(x)在(1,2]上遞增,
∴φ(x)>φ(1),即 ,則
綜上,原命題得證
【解析】(Ⅰ)求出原函數(shù)的導函數(shù),然后對a分類求得函數(shù)的單調區(qū)間;(Ⅱ)對任意x∈(0,+∞),都有f(x)≤0,轉化為f(x)max≤0,分類求出f(x)max , 求解不等式可得實數(shù)a的取值范圍;(Ⅲ)把要證的不等式變形,然后借助于(Ⅰ)中的函數(shù)的單調性證明.
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減,以及對函數(shù)的最大(小)值與導數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ln(x﹣1)+ax2+x+1,g(x)=(x﹣1)ex+ax2 , a∈R. (Ⅰ)當a=1時,求函數(shù)f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若函數(shù)g(x)有兩個零點,試求a的取值范圍;
(Ⅲ)證明f(x)≤g(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 =(a1 , a2), =(b1 , b2),定義一種向量運算 =(a1b1 , a2b2),已知向量 =(2, ), =( ,0),點P(x′,y′)在y=sinx的圖象上運動.點Q(x,y)是函數(shù)y=f(x)圖象上的動點,且滿足 +n(其中O為坐標原點),則函數(shù)y=f(x)的值域是(
A.[﹣ , ]
B.
C.[﹣1,1]
D.(﹣1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在淘寶網上,某店鋪專賣孝感某種特產.由以往的經驗表明,不考慮其他因素,該特產每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克,1<x≤5)滿足:當1<x≤3時,y=a(x﹣3)2+ ,(a,b為常數(shù));當3<x≤5時,y=﹣70x+490.已知當銷售價格為2元/千克時,每日可售出該特產600千克;當銷售價格為3元/千克時,每日可售出150千克.
(1)求a,b的值,并確定y關于x的函數(shù)解析式;
(2)若該特產的銷售成本為1元/千克,試確定銷售價格x的值,使店鋪每日銷售該特產所獲利潤f(x)最大(x精確到0.1元/千克).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的最小正周期為π.
(Ⅰ)求f(x)的單調遞增區(qū)間;
(Ⅱ)若a,b,c分別為△ABC的三內角A,B,C的對邊,角A是銳角,f(A)=0,a=1,b+c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,三邊a,b,c所對應的角分別是A,B,C,已知a,b,c成等比數(shù)列.
(1)若 + = ,求角B的值;
(2)若△ABC外接圓的面積為4π,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Sn為數(shù)列{an}的前n項和,已知 .則{an}的通項公式an=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)x,y滿足 若z=x+my的最小值是﹣5,則實數(shù)m取值集合是(
A.{﹣4,6}
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinx,﹣1),向量 =( cosx,﹣ ),函數(shù)f(x)=( +
(1)求f(x)的最小正周期T;
(2)已知a,b,c分別為△ABC內角A,B,C的對邊,A為銳角,a=2 ,c=4,且f(A)恰是f(x)在[0, ]上的最大值,求A和b.

查看答案和解析>>

同步練習冊答案