【題目】已知雙曲線E的中心為原點(diǎn),P(3,0)是E的焦點(diǎn),過P的直線l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(﹣12,﹣15),則E的方程式為(
A.
B.
C.
D.

【答案】B
【解析】解:由已知條件易得直線l的斜率為k=kPN=1, 設(shè)雙曲線方程為
A(x1 , y1),B(x2 , y2),
則有 ,
兩式相減并結(jié)合x1+x2=﹣24,y1+y2=﹣30得
= ,
從而= =1
即4b2=5a2
又a2+b2=9,
解得a2=4,b2=5,
故選B.
已知條件易得直線l的斜率為1,設(shè)雙曲線方程,及A,B點(diǎn)坐標(biāo)代入方程聯(lián)立相減得x1+x2=﹣24,根據(jù) = ,可求得a和b的關(guān)系,再根據(jù)c=3,求得a和b,進(jìn)而可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則棱SB的長(zhǎng)為;直線SB與AC所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ln(1﹣ )+1,則f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f( 5)+f(7 )+f( 9)=(
A.0
B.4
C.8
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 + =1(a>b>0)右頂點(diǎn)與右焦點(diǎn)的距離為 ﹣1,短軸長(zhǎng)為2 . (Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若三角形OAB的面積為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1
(2)二面角B1﹣CD﹣B的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x).
(1)若f(α)= α∈(0°,180°),求tanα;
(2)若f(α)=2sinα﹣cosα+ ,求sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 、 為平面向量,若存在不全為零的實(shí)數(shù)λ,μ使得λ =0,則稱 、 線性相關(guān),下面的命題中, 、 均為已知平面M上的向量. ①若 =2 ,則 、 線性相關(guān);
②若 、 為非零向量,且 ,則 、 線性相關(guān);
③若 、 線性相關(guān), 、 線性相關(guān),則 、 線性相關(guān);
④向量 線性相關(guān)的充要條件是 、 共線.
上述命題中正確的是(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2ax2+4(a﹣3)x+5在區(qū)間(﹣∞,3)上是減函數(shù),則a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案