2.已知i是虛數(shù)單位,則z=$\frac{3+2i}{i}$+$\frac{2+i}{1-2i}$i(i為虛數(shù)單位)所對應(yīng)的點位于復(fù)平面內(nèi)的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:z=$\frac{3+2i}{i}$+$\frac{2+i}{1-2i}$i=$\frac{-i(3+2i)}{-i•i}$+$\frac{(2i-1)(1+2i)}{(1-2i)(1+2i)}$=2-3i+$\frac{-5}{5}$=1-3i,
因此所對應(yīng)的點(1,-3)位于復(fù)平面內(nèi)的第四象限.
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.(ax-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6的展開式中各項系數(shù)的和為16,則展開式中x3項的系數(shù)為( 。
A.974B.$\frac{63}{2}$C.57D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在(3x+2y-1)10的展開式中,不含y的所有項的系數(shù)和為210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知sin(-π+θ)+2cos(3π-θ)=0,則$\frac{sinθ+cosθ}{sinθ-cosθ}$=(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={x|x2-2x-3<0},B={x|x>0},則A∪B=( 。
A.(-1,+∞)B.(-∞,3)C.(0,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)正實數(shù)a,b,c分別滿足2a2+a=1,blog2b=1,clog5c=1,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.定義在區(qū)間[-2,t](t>-2)上的函數(shù)f(x)=(x2-3x+3)ex(其中e為自然對數(shù)的底).
(1)當(dāng)t>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)m=f(-2),n=f(t),求證:m<n;
(3)設(shè)g(x)=f(x)+(x-2)ex,當(dāng)x>1時,試判斷方程g(x)=x的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:4x2+y2=4m2(m>0),過原點的直線與橢圓C交于A,B兩點,點P是橢圓上的任意一點且直線PA,PB與坐標(biāo)軸不平行.
(1)證明:直線PA的斜率與直線PB斜率之積為定值;
(2)若A,B不是橢圓C的頂點,且PA⊥AB,直線BP與x軸,y軸分別交于E,F(xiàn)兩點.
(i)證明:直線BP的斜率與直線AF斜率之比為定值;
(ii)記△OEF的面積為S△OEF,求$\frac{{{S_{△OEF}}}}{m^2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,已知梯形ABCD中,BC∥AD,BC=BE=1,AD=4,E為AD的中點,BE⊥AD.將△ABE沿BE折起到△PBE的位置,使∠PED=120°,如圖2.M是棱PB上的一點(M不與P,B重合),平面DEM交PC于N.

(Ⅰ)求證:DE∥MN;
(Ⅱ)求平面PBE與平面PCD所成銳二面角的余弦值;
(Ⅲ)是否存在點M,使得平面MNDE⊥平面PCD?若存在,求出$\frac{PM}{PB}$的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案