5.若橢圓x2+my2=1的離心率為$\frac{\sqrt{3}}{2}$,則m為( 。
A.4B.$\frac{1}{4}$C.3D.4 或$\frac{1}{4}$

分析 首先將方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,進(jìn)而能夠得出a2、b2,然后求出m,從而得出長半軸長.

解答 解:橢圓x2+my2=1即 $\frac{{y}^{2}}{\frac{1}{m}}$+x2=1,當(dāng)橢圓焦點在y軸上時,
∴a2=$\frac{1}{m}$,b2=1,
由c2=a2-b2得,c2=$\frac{1-m}{m}$,
∵$\frac{{c}^{2}}{{a}^{2}}$=1-m=$\frac{3}{4}$ 得m=$\frac{1}{4}$,
∴則m為$\frac{1}{4}$,
當(dāng)橢圓焦點在x軸上時,b2=$\frac{1}{m}$,a2=1,
∴$\frac{m-1}{m}=\frac{3}{4}$,可得m=4.
故選:D.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程和簡單性質(zhì),此題要注意橢圓在x軸和y軸兩種情況,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$);
(1)若$\overrightarrow{a}$∥$\overrightarrow$,且θ∈(0,π),求θ;
(2)若|3$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-3$\overrightarrow$|,求|$\overrightarrow{a}$+$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{lo{g}_{2}(2x-1)}{\sqrt{x+1}}$的定義域是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集U={-2,-1,0,1,2},集合A={x∈Z|x2+x-2<0},則∁UA=( 。
A.{-2,1,2}B.{-2,1}C.{1,2}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{x}$+x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[1,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中正確的有( 。
①命題?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“對?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③若曲線C上的所有點的坐標(biāo)都滿足方程f(x,y)=0,則稱方程f(x,y)=0是曲線C的方程;
④十進(jìn)制數(shù)66化為二進(jìn)制數(shù)是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.1 887與2 091的最大公約數(shù)是51.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)g(x)是y=ax(a>0且a≠1)的反函數(shù),若函數(shù)f(x)=b+g(x)的定義域和值域都是[1,3],則$\frac{a}$=( 。
A.$\sqrt{3}$B.$\sqrt{3}$或$\frac{\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{9}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=2x+x-5的零點在區(qū)間(a,b)(a,b是整數(shù)且b-a=1)內(nèi),則a+b=3.

查看答案和解析>>

同步練習(xí)冊答案