【題目】若x,y滿足 且z=y﹣x的最小值為﹣4,則k的值為( )
A.2
B.﹣2
C.
D.﹣
【答案】D
【解析】解:對不等式組中的kx﹣y+2≥0討論,可知直線kx﹣y+2=0與x軸的交點在x+y﹣2=0與x軸的交點的右邊, 故由約束條件 作出可行域如圖,
由kx﹣y+2=0,得x= ,
∴B(﹣ ).
由z=y﹣x得y=x+z.
由圖可知,當(dāng)直線y=x+z過B(﹣ )時直線在y軸上的截距最小,即z最。
此時 ,解得:k=﹣ .
故選:D.
對不等式組中的kx﹣y+2≥0討論,當(dāng)k≥0時,可行域內(nèi)沒有使目標(biāo)函數(shù)z=y﹣x取得最小值的最優(yōu)解,k<0時,若直線kx﹣y+2=0與x軸的交點在x+y﹣2=0與x軸的交點的左邊,z=y﹣x的最小值為﹣2,不合題意,由此結(jié)合約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,由圖得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)f(x)的最小正周期和單調(diào)區(qū)間;
(2)設(shè)銳角△ABC的三個內(nèi)角A、B、C的對應(yīng)邊分別是a,b,c,若 , ,f( )=﹣ ,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點P(3,2)且在兩坐標(biāo)軸上的截距相等的直線方程是( )
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域是一切實數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數(shù)x都成立,則稱f(x)實數(shù)一個“λ一半隨函數(shù)”,有下列關(guān)于“λ一半隨函數(shù)”的結(jié)論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個“λ一半隨函數(shù);③“ 一半隨函數(shù)”至少有一個零點;④f(x)=x2是一個“λ一班隨函數(shù)”;其中正確的結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ﹣1(x≠0),k∈R.
(1)當(dāng)k=3時,試判斷f(x)在(﹣∞,0)上的單調(diào)性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實數(shù)k的取值范圍;
(3)當(dāng)k∈R時,試討論f(x)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點)上一個動點,設(shè) , ,則得到函數(shù)y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)對于任意a∈(0,+∞),求函數(shù)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機抽取n份試卷進(jìn)行成績分析,得到數(shù)學(xué)成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學(xué)生人數(shù)為6.
(Ⅰ)估計所抽取的數(shù)學(xué)成績的眾數(shù);
(Ⅱ)用分層抽樣的方法在成績?yōu)閇80,90)和[90,100]這兩組中共抽取5個學(xué)生,并從這5個學(xué)生中任取2人進(jìn)行點評,求分?jǐn)?shù)在[90,100]恰有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
B.函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)對稱
C.若方程f(x)=m在[﹣ ,0]上有兩個不相等的實數(shù)根,則實數(shù)m∈(﹣2,﹣ ]
D.將函數(shù)f(x)的圖象向左平移 個單位可得到一個偶函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com