分析 (1)設(shè)直線l斜截式方程y-1=k(x-2),結(jié)合直線與坐標(biāo)軸的交點的求法、三角形的面積公式求得k的值即可;
(2)利用(1)中△AOB的面積為S=$\frac{1}{2}$×|2-$\frac{1}{k}$|×|1-2k|和不等式的性質(zhì)進行解答.
解答 解:(1)設(shè)直線方程為y-1=k(x-2),
分別令x=0,y=0得A(1-2k,0),B(0,2-$\frac{1}{k}$),
故△AOB的面積為S=$\frac{1}{2}$×|2-$\frac{1}{k}$|×|1-2k|=$\frac{9}{2}$,
解得k=-1或k=-$\frac{1}{4}$,
故所求直線為x+y-3=0或x+4y-6=0;
(2)由(1)知S=$\frac{1}{2}$×|2-$\frac{1}{k}$|×|1-2k|=$\frac{1}{2}$(2-$\frac{1}{k}$)(1-2k)=2-2k-$\frac{1}{2k}$=2+(-2k-$\frac{1}{2k}$)≥2+2=4,
故Smin=4,此時k=-$\frac{1}{2}$,直線l的方程為x+2y-4=0.
點評 本題給出經(jīng)過定點的直線,求滿足特殊條件的直線方程.著重考查了直線的基本量與基本形式、基本不等式求最值等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13 | B. | 8 | C. | 21 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com