11.Sn為{an}前n項(xiàng)和對n∈N*都有Sn=1-an,若bn=log2an,$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<m$恒成立,則m的最小值為1.

分析 先根據(jù)數(shù)列的遞推公式求出an的通項(xiàng)公式,再求出bn的通項(xiàng)公式,根據(jù)裂項(xiàng)求和和放縮法即可求出m的最小值.

解答 解:∵Sn=1-an,
∴Sn-1=1-an-1
∴an=Sn-Sn-1=(1-an)-(1-an-1)=an-1-an,
∴2an=an-1
∵S1=1-a1=a1,
∴a1=$\frac{1}{2}$
∴數(shù)列{an}是以$\frac{1}{2}$為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∴an=($\frac{1}{2}$)n,
∴bn=log2an=-n,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)=1-$\frac{1}{n+1}$,
∴m>1-$\frac{1}{n+1}$,
∴m的最小值為1,
故答案為:1

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式的求法和裂項(xiàng)其和以及放縮法以及不等式恒成立的問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={1,2,m2},且B={3,2},B⊆A,則m=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在銳角△ABC中,已知BC=1,B=2A,則AC的取值范圍是( 。
A.$({0,\sqrt{2}})$B.$({0,\sqrt{3}})$C.$({\sqrt{2},\sqrt{3}})$D.$({\sqrt{3},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>1},U=R.
(1)求A∪B,(∁UA)∩B;
(2)求A∩C,B∪C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知離心率為e的雙曲線和離心率為$\frac{{\sqrt{2}}}{2}$的橢圓有相同的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)公共點(diǎn),若∠F1PF2=60°,則e=$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓x2+(m+3)y2=m(m>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及橢圓的長軸和短軸的長、焦點(diǎn)的坐標(biāo)、頂點(diǎn)的坐標(biāo)、準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線x-3y-k=0與直線9y=9kx+1沒有公共點(diǎn),則k的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若4a=8,則a=$\frac{3}{2}$,若lg2+lgb=1,則b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(cosx,$\sqrt{3}$sin2x+m),f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(1)求f(x)在x∈[0,π]上的增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{6}$]時(shí),-4≤f(x)≤4恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案