在海南省第二十六屆科技創(chuàng)新大賽活動(dòng)中,某同學(xué)為研究“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩電腦游戲,而調(diào)查的女生中有9人喜歡玩電腦游戲.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;

性別
游戲態(tài)度
男生女生合計(jì)
喜歡玩電腦游戲
不喜歡玩電腦游戲
合計(jì)50
(Ⅱ)請(qǐng)畫出上述列聯(lián)表的等高條形圖.
考點(diǎn):獨(dú)立性檢驗(yàn)的基本思想
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)所給的數(shù)據(jù),分別計(jì)算出a,b,c,d的值,可畫出列聯(lián)表;
(Ⅱ)根據(jù)所給的數(shù)據(jù),分別計(jì)算出男生,女生中喜歡玩電腦游戲的比例,可得等高條形圖.
解答:解:(Ⅰ)2×2列聯(lián)表
          性別
游戲態(tài)度
男生女生總計(jì)
喜歡玩電腦游戲18927
不喜歡玩電腦游戲81523
總計(jì)262450
(Ⅱ)上述列聯(lián)表的等高條形圖如下所示:
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,解題的關(guān)鍵是根據(jù)已知求出表中各個(gè)單元格的數(shù)據(jù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題是( 。
A、相關(guān)系數(shù)r(|r|≤1),|r|值越小,變量之間的線性相關(guān)程度越高B、“存在x∈R,使得x2+x+1<0”的否定是“對(duì)任意x∈R.均有x2+x+1<0”C、命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題D、“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=k(x+1)與拋物線C:y2=4x相交于點(diǎn)A,B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|FA|=3|FB|,則k=( 。
A、±
3
2
B、±
3
2
C、±
3
4
D、±
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3+3x2-4的單調(diào)遞增區(qū)間是(  )
A、(-∞,0)B、(-2,0)C、(0,2)D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中的兩項(xiàng)a2,a2014是函數(shù)f(x)=
1
3
x3-3x2+ax(a為常數(shù))的極值點(diǎn),且a1008+a1009<0,則使{an}的前n項(xiàng)和Sn取得最大值的n為( 。
A、1008
B、1009
C、1008,1009
D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一項(xiàng)關(guān)于禿頂和患心臟病關(guān)系的研究中,調(diào)查了665名男性病人,經(jīng)過計(jì)算得到隨機(jī)變量K2的觀測值k=7.373,若認(rèn)為“禿頂與患心臟病有關(guān)”,則判斷出錯(cuò)的概率是
 

附表:
P(K2≥k0 0.025 0.010 0.005
k0 5.024 6.635 7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f為實(shí)系數(shù)三次多項(xiàng)式函數(shù).已知五個(gè)方程式的相異實(shí)根個(gè)數(shù)如下表所述﹕
f(x)-20=01f(x)+10=01
f(x)-10=03f(x)+20=01
f(x)=03
關(guān)于f的極小值α﹐試問下列選項(xiàng)是正確的﹖( 。
A、0<α<10
B、-20<α<-10
C、-10<α<0
D、α不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2+i
i3
(i為虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB與CD相交于點(diǎn)E,過E作BC的平行線與AD的延長線交于點(diǎn)P,已知∠A=∠C,PD=2DA=2,求PE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案