雙曲線x2-
y23
=1
的漸近線中,斜率較小的一條漸近線的傾斜角為
120°
120°
分析:先利用雙曲線的幾何性質(zhì)計(jì)算雙曲線的漸近線方程,通過(guò)比較的較小的斜率,再由斜率的定義,計(jì)算直線的傾斜角即可
解答:解:雙曲線x2-
y2
3
=1
的漸近線方程為y=±
3
x
∴斜率較小的一條漸近線為y=-
3
x,其斜率為-
3
,傾斜角為120°
故答案為120°
點(diǎn)評(píng):本題考查了雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì),雙曲線的漸近線方程的求法,斜率的定義,傾斜角的定義和求法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,橢圓C以雙曲線x2-
y23
=1
的焦點(diǎn)為頂點(diǎn),以雙曲線的頂點(diǎn)為焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(diǎn)(M、N不是左右頂點(diǎn)),且以線段MN為直徑的圓過(guò)點(diǎn)A(2,0),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)設(shè)雙曲線x2-
y23
=1
的左右焦點(diǎn)分別為F1、F2,P是直線x=4上的動(dòng)點(diǎn),若∠FPF2=θ,則θ的最大值為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以雙曲線x2-
y23
=1的右焦點(diǎn)為圓心,離心率為半徑的圓的方程是
(x-2)2+y2=4
(x-2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=8y的焦點(diǎn)到雙曲線x2-
y2
3
=1
的漸近線的距離是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C的圓心在y軸正半軸上,且與x軸相切,被雙曲線x2-
y2
3
=1
的漸近線截得的弦長(zhǎng)為
3
,則圓C的方程為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案