若a,b是任意非零實數(shù),且a>b,則( )
A.lg(a-b)>0
B.2a>2b
C.
D.
【答案】分析:對于選項A、C令a=2,b=1可判斷真假,選項B根據(jù)指數(shù)函數(shù)的單調(diào)性可知正確,選項D令a=2,b=-1,可知真假,從而得到選項.
解答:解:令a=2,b=1則選項A,lg(a-b)=0,故不正確
選項C,,不成立,故不正確;
令a=2,b=-1,<-1不成立,故不正確;
選項B根據(jù)指數(shù)函數(shù)的單調(diào)性可知正確
故選B
點評:本題主要考查了不等式比較大小,同時考查了利用列舉法排除答案和指數(shù)函數(shù)的單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•閘北區(qū)一模)設f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b為非零實常數(shù).
(1)若f(x)=1-
3
,x∈[-
π
3
π
3
]
,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當且僅當x1=x2時,等號成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽三模)已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設關于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆四川省高二“零診”考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)(其中a,b為實常數(shù))。

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:

(Ⅱ)當時,函數(shù)有三個不同的零點,證明:

(Ⅲ)若在區(qū)間上是減函數(shù),設關于x的方程的兩個非零實數(shù)根為,。試問是否存在實數(shù)m,使得對任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)學公式,數(shù)學公式,其中a,b為非零實常數(shù).
(1)若數(shù)學公式數(shù)學公式,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當且僅當x1=x2時,等號成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省綿陽市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=2x3-3ax2+a+b(其中a,b為實常數(shù)).
(I)討論函數(shù)的單調(diào)區(qū)間;
(II) 當a>0時,函數(shù)f(x)有三個不同的零點,證明:-a<b<a3-a;
(III) 若f(x)在區(qū)間[1,2]上是減函數(shù),設關于X的方程f(x)=2x3-2ax2+3x+a+b的兩個非零實數(shù)根為x1,x2.試問是否存在實數(shù)m,使得m2+tm+1≤|x1-x2|對任意滿足條件的a及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案