17.如圖,在棱長均為2的正三棱柱ABC-A1B1C1中,點M是側(cè)棱AA1的中點,點P是側(cè)面BCC1B1內(nèi)的動點,且A1P∥平面BCM,則點P的軌跡的長度為2.

分析 由題意,點P是側(cè)面BCC1B1內(nèi)的動點,且A1P∥平面BCM,A1P∥平面BCM,則P的軌跡是平行于BC的一條線段,即可得出結(jié)論.

解答 解:由題意,點P是側(cè)面BCC1B1內(nèi)的動點,
且A1P∥平面BCM,A1P∥平面BCM,則P的軌跡是平行于BC的一條線段,長度為2.
故答案為2.

點評 本題考查線面平行,考查軌跡問題,確定P的軌跡是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖算法最后輸出的結(jié)果是67.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓7x2+3y2=21上一點到兩個焦點的距離之和為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25.
(I)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(II)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),α為直線l的傾斜角,l與C交于A,B兩點,且|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若兩條直線2x-y=0與ax-2y-1=0互相垂直,則實數(shù)a的值為( 。
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.頂點在原點的拋物線C關(guān)于x軸對稱,點P(1,2)在此拋物線上.
(Ⅰ)寫出該拋物線C的方程及其準(zhǔn)線方程;
(Ⅱ)若直線y=x與拋物線C交于A,B兩點,求△ABP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用一個平面截正方體和正四面體,給出下列結(jié)論:
①正方體的截面不可能是直角三角形;
②正四面體的截面不可能是直角三角形;
③正方體的截面可能是直角梯形;
④若正四面體的截面是梯形,則一定是等腰梯形.
其中,所有正確結(jié)論的序號是(  )
A.②③B.①②④C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.過橢圓$\frac{x^2}{2}+{y^2}=1$右焦點F的直線l與橢圓交于兩點C,D,與直線x=2交于點E.
(Ⅰ)若直線l的斜率為2,求|CD|;
(Ⅱ)設(shè)O為坐標(biāo)原點,若S△ODE:S△OCE=1:3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈(0,1)時,f(x)=x-1,則函數(shù)y=f(x)-log4|x|的零點個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案