已知橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)已知點(diǎn)B(2,0),設(shè)點(diǎn)P是橢圓C上任一點(diǎn),求的取值范圍.
【答案】分析:(1)設(shè)橢圓C的方程為,利用橢圓定義可求2a,進(jìn)而可求a,結(jié)合已知c,利用b2=a2-c2可求b,進(jìn)而可求橢圓方程
(2)先設(shè),利用向量的數(shù)量積的坐標(biāo)表示可求,結(jié)合點(diǎn)P在橢圓上及橢圓的性質(zhì)可求
解答:解:(1)設(shè)橢圓C的方程為…(1分)
由橢圓定義,…(4分)
,∵c=1,∴b2=a2-c2=1.…(5分)
故所求的橢圓方程為.…(6分)
(2)設(shè)…(7分)
…(9分)
∵點(diǎn)P在橢圓上,
…(10分)

…(12分)
∴x=1,有最小值
,有最大值
,
的范圍是…(14分)
點(diǎn)評(píng):本題主要考查了利用橢圓的定義及性質(zhì)求解橢圓方程及橢圓性質(zhì)的簡(jiǎn)單應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的兩個(gè)焦點(diǎn)為F1(-2
2
,0)
,F2(2
2
,0)
,P為橢圓上一點(diǎn),滿(mǎn)足∠F1PF2=60°.
(1)當(dāng)直線l過(guò)F1與橢圓C交于M、N兩點(diǎn),且△MF2N的周長(zhǎng)為12時(shí),求C的方程;
(2)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”.
(1)若橢圓C過(guò)點(diǎn)(
5
,0)
,且焦距為4,求“伴隨圓”的方程;
(2)如果直線x+y=3
2
與橢圓C的“伴隨圓”有且只有一個(gè)交點(diǎn),那么請(qǐng)你畫(huà)出動(dòng)點(diǎn)Q(a,b)軌跡的大致圖形;
(3)已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2
2
,0),橢圓C上一動(dòng)點(diǎn)M1滿(mǎn)足|
M1F1
|+|
M1F
2
|=2
3
.設(shè)點(diǎn)P是橢圓C的“伴隨圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1、l2使得l1、l2與橢圓C都各只有一個(gè)交點(diǎn),且l1、l2分別交其“伴隨圓”于點(diǎn)M、N.當(dāng)P為“伴隨圓”與y軸正半軸的交點(diǎn)時(shí),求l1與l2的方程,并求線段|
MN
|
的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2(
2
,0)
,橢圓C上一動(dòng)點(diǎn)M1滿(mǎn)足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程
(Ⅱ)試探究y軸上是否存在點(diǎn)P(0,m)(m<0),使得過(guò)點(diǎn)P作直線l與橢圓C只有一個(gè)交點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為2
2
.若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),拋物線E以坐標(biāo)原點(diǎn)為頂點(diǎn),F(xiàn)2為焦點(diǎn).直線l過(guò)點(diǎn)F2,且交y軸于D點(diǎn),交拋物線E于A,B兩點(diǎn)若F1B⊥F2B,則|AF2|-|BF2|=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•潮州二模)已知橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),點(diǎn)A(1,
2
2
)
在橢圓C上.
(1)求橢圓C的方程;
(2)已知點(diǎn)B(2,0),設(shè)點(diǎn)P是橢圓C上任一點(diǎn),求
PF
1
PB
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案