17.經(jīng)過點(diǎn)A(-1,4),且斜率為-1的直線方程是( 。
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x+y-5=0

分析 利用直線的點(diǎn)斜式方程求解.

解答 解:經(jīng)過點(diǎn)A(-1,4),且斜率為-1的直線方程為:
y-4=-(x+1),
整理,得x+y-3=0.
故選:C.

點(diǎn)評 本題考查直線方程的求法,是基礎(chǔ)題,解題時(shí)要注意點(diǎn)斜式方程的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線3x-4y+1=0與圓x2+y2=1,則它們的位置關(guān)系為( 。
A.相交且過圓心B.相交不過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$不共線,則關(guān)于x的方程$\overrightarrow{a}$x2+$\overrightarrow$x+$\overrightarrow{c}$=0的解的情況是( 。
A.至少有一個(gè)實(shí)數(shù)解B.至多只有一個(gè)實(shí)數(shù)解
C.至多有兩個(gè)實(shí)數(shù)解D.可能有無數(shù)個(gè)實(shí)數(shù)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在點(diǎn)(1,0)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)對任何x∈R恒有f(x1•x2)=f(x1)+f(x2),已知f(8)=3,則f(2)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,已知an>0,(an+1)2=4(Sn+1),bnSn-1=(n+1)2,其中n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前項(xiàng)和Tn;
(3)且符號(hào)[x]表示不超過x的最大整數(shù),例如[$\frac{2}{3}}$]=0,[${\frac{11}{12}}$]=0,[${\frac{21}{20}}$]=0,[2.8]=2.當(dāng)n∈N*時(shí),試求[T1]+[T2]+…+[Tn].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.兩人輪流投擲骰子,每人每次投擲兩顆,第一個(gè)使兩顆骰子點(diǎn)數(shù)和大于6者為勝,否則由另一人投擲,先投擲人的獲勝概率是$\frac{12}{17}$(寫出計(jì)算過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知角α的終邊經(jīng)過點(diǎn)P(1,2),則$\frac{2sinα+3cosα}{sinα+4cosα}$的值為$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.7人排成一排,甲、乙兩人必須相鄰,且甲、乙都不與丙相鄰,則不同的排法有( 。┓N.
A.960種B.840種C.720種D.600種

查看答案和解析>>

同步練習(xí)冊答案