分析 (1)求出導(dǎo)函數(shù),利用導(dǎo)函數(shù)求單調(diào)區(qū)間即可;
(2)根據(jù)導(dǎo)函數(shù)的意義求解即可.
解答 解:(1)f'(x)=lnx+1>0,
解得x>$\frac{1}{e}$,
由f'(x)<0解得0<x<$\frac{1}{e}$,
f(x)的增區(qū)間為($\frac{1}{e}$,+∞),減區(qū)間(0,$\frac{1}{e}$),
(2)f'(1)=1.
所以切線方程為y-0=x-1.
∴y=x-1.
點評 考查了導(dǎo)函數(shù)的意義和應(yīng)用,屬于常規(guī)題型,應(yīng)熟練掌握.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 390 | B. | 400 | C. | 420 | D. | 440 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
頻數(shù) | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
頻數(shù) | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y+3=0 | B. | x-y+3=0 | C. | x+y-3=0 | D. | x+y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com