【題目】已知函數(shù)f(x)=ax+b,x∈[-1,1],a,b∈R,且是常數(shù).
(1)若a是從-2,-1,0,1,2五個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)y=f(x)為奇函數(shù)的概率;
(2)若a是從區(qū)間[-2,2]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)y=f(x)有零點(diǎn)的概率.
【答案】(1);(2).
【解析】試題分析:
(1)由題意可得基本事件共有15個(gè),滿足題意時(shí),b=0,滿足題意的事件有5個(gè),結(jié)合古典概型計(jì)算公式可得滿足題意的概率為;
(2)由題意結(jié)合幾何概型計(jì)算公式可得滿足題意的概率值為.
試題解析:
(1)函數(shù)f(x)=ax+b,x∈[-1,1]為奇函數(shù),當(dāng)且僅當(dāng)任取x∈[-1,1],f(-x)=-f(x),即b=0,基本事件共15個(gè):(-2,0),(-2,1),(-2,2),(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值.
設(shè)事件A為“函數(shù)f(x)=ax+b,x∈[-1,1]為奇函數(shù)”,包含的基本事件有5個(gè):(-2,0),(-1,0),(0,0),(1,0),(2,0),事件A發(fā)生的概率為P(A)=.
(2)設(shè)事件B為“函數(shù)y=f(x)有零點(diǎn)”,試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>{(a,b)|-2≤a≤2,0≤b≤2},區(qū)域面積為4×2=8.構(gòu)成事件B的區(qū)域?yàn)?/span>{(a,b)|a=b=0}∪{(a,b)|-2≤a≤2,0≤b≤2,a≠0,且(a+b)(b-a)<0},即{(a,b)|a=b=0}∪,區(qū)域面積為×4×2=4,事件B發(fā)生的概率為P(B)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在區(qū)間上的兩個(gè)函數(shù)和,如果對(duì)任意的,均有不等式成立,則稱函數(shù)與在上是“友好”的,否則稱為“不友好”的.
(1)若,,則與在區(qū)間上是否“友好”;
(2)現(xiàn)在有兩個(gè)函數(shù)與,給定區(qū)間.
①若與在區(qū)間上都有意義,求的取值范圍;
②討論函數(shù)與與在區(qū)間上是否“友好”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,為的中點(diǎn).
()求證:.
()求證:平面平面.
()在平面內(nèi)是否存在,使得直線平面,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下說(shuō)法:
①一年按365天計(jì)算,兩名學(xué)生的生日相同的概率是;②買彩票中獎(jiǎng)的概率為0.001,那么買1 000張彩票就一定能中獎(jiǎng);③乒乓球賽前,決定誰(shuí)先發(fā)球,抽簽方法是從1~10共10個(gè)數(shù)字中各抽取1個(gè),再比較大小,這種抽簽方法是公平的;④昨天沒(méi)有下雨,則說(shuō)明“昨天氣象局的天氣預(yù)報(bào)降水概率是90%”是錯(cuò)誤的.
根據(jù)我們所學(xué)的概率知識(shí),其中說(shuō)法正確的序號(hào)是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
(1)求頻率直方圖中a的值;
(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,,其中e為自然對(duì)數(shù)的底數(shù).
求函數(shù)的單調(diào)區(qū)間;
求證:;
若恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個(gè)對(duì)稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線(為參數(shù))與曲線相交于兩點(diǎn).
(1)試寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com