【題目】橢圓中心是原點(diǎn)O,它的短軸長(zhǎng)為 ,右焦點(diǎn)F(c,0)(c>0),它的長(zhǎng)軸長(zhǎng)為2a(a>c>0),直線l: 與x軸相交于點(diǎn)A,|OF|=2|FA|,過點(diǎn)A的直線與橢圓相交于P、Q兩點(diǎn).
(1)求橢圓的方程和離心率;
(2)若 ,求直線PQ的方程;
(3)設(shè) (λ>1),過點(diǎn)P且平行于直線l的直線與橢圓相交于另一點(diǎn)M,證明: .
【答案】
(1)解:如圖,
設(shè)橢圓方程為 .
由|OF|=2|FA|,得c=2( ),整理得:3c2=2a2,∴e= .
聯(lián)立 ,解得:a2=6,b2=2.
∴橢圓的方程為 ,離心率 .
(2)解:由題意可知直線l的斜率顯然存在,設(shè)其斜率為k(k≠0),且A(3,0).
則直線l的方程為y=k(x﹣3),設(shè)P(x1,y1),Q(x2,y2).
聯(lián)立 ,得:(1+3k2)x2﹣18k2x+27k2﹣6=0.
由△=(﹣18k2)2﹣4(1+3k2)(27k2﹣6)=12(2﹣3k2)>0,得: .
, .
由 ,得x1x2+y1y2=0.
即x1x2+(kx1﹣3k)(kx2﹣3k)=
= =0.
化簡(jiǎn)得: ,∴k= ,滿足 .
(3)解: , ,
由已知得方程組 ,解得: .
∵F(2,0),M(x1,﹣y1).
故 =(λ(x2﹣3)+1,﹣y1)
= = .
而 .
∴ .
【解析】(1)首先由條件|OF|=2|FA|列式,求出橢圓的離心率,然后結(jié)合短軸長(zhǎng)2b= 及a2=b2+c2可求a2 , 則橢圓方程可求;(2)寫出過點(diǎn)A的直線方程,設(shè)出直線與橢圓相交于P、Q兩點(diǎn)的坐標(biāo),聯(lián)立直線方程和橢圓方程后求出P、Q兩點(diǎn)的橫坐標(biāo)的和與積,由 ,得到P、Q兩點(diǎn)的坐標(biāo)的關(guān)系,轉(zhuǎn)化為橫坐標(biāo)的關(guān)系后,把前面得到的和與積的表達(dá)式代入即可求出直線的斜率,則直線方程可求;(3)由向量的坐標(biāo)表示寫出 , ,再由 (λ>1)及P,Q兩點(diǎn)的坐標(biāo)都適合橢圓方程列式找出P,Q兩點(diǎn)的坐標(biāo)與λ的關(guān)系,最后把要證的等式的兩邊的坐標(biāo)都用λ和縱坐標(biāo)表示即可得證.
【考點(diǎn)精析】掌握橢圓的標(biāo)準(zhǔn)方程是解答本題的根本,需要知道橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(用空間向量坐標(biāo)表示解答)已知正三棱柱ABC﹣A1B1C1的各棱長(zhǎng)都是4,E是BC的中點(diǎn),F(xiàn)在CC1上,且CF=1.
(1)求證:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校為進(jìn)行“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形ABC的空地上修建一個(gè)占地面積為S(平方米)的矩形AMPN健身場(chǎng)地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].設(shè)矩形AMPN健身場(chǎng)地每平方米的造價(jià)為 元,再把矩形AMPN以外(陰影部分)鋪上草坪,每平方米的造價(jià)為 元(k為正常數(shù)).
(1)試用x表示S,并求S的取值范圍;
(2)求總造價(jià)T關(guān)于面積S的函數(shù)T=f(S);
(3)如何選取|AM|,使總造價(jià)T最低(不要求求出最低造價(jià)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求實(shí)數(shù)a的值;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若f(x)=ax2+3a是定義在[a2﹣5,a﹣1]上的偶函數(shù),令函數(shù)g(x)=f(x)+f(1﹣x),則函數(shù)g(x)的定義域?yàn)?/span> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣t|+ (x>0);
(1)判斷函數(shù)y=f(x)在區(qū)間(0,t]上的單調(diào)性,并證明;
(2)若函數(shù)y=f(x)的最小值為與t無(wú)關(guān)的常數(shù),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意實(shí)數(shù)x,不等式mx2﹣(3﹣m)x+1>0成立或不等式mx>0成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com