設(shè)函數(shù)h(x)=其中f(x)=|x|,g(x)=-(x-1)2+3,則h(x+1)的最大值為( )
A.0
B.1
C.2
D.3
【答案】分析:本題考查的是的是分段函數(shù)問(wèn)題.在解答時(shí)應(yīng)先結(jié)合函數(shù)f(x)、g(x)的圖象,根據(jù)所給分段函數(shù)的意義寫(xiě)出分段函數(shù)h(x)的解析式,進(jìn)而求得函數(shù)h(x)的最大值,由于h(x+1)的圖象可以看作由函數(shù)h(x)的圖象向左平移1個(gè)單位得到.進(jìn)而獲得問(wèn)題的解答.
解答:解:由題意可知:函數(shù)f(x)、g(x)的圖象為:
                              
由圖象可知:函數(shù)h(x)的解析式為:

當(dāng)x≤-1時(shí),hmax(x)=-1;
當(dāng)-1<x≤2時(shí),hmax(x)=2;
當(dāng)x>2時(shí),h(x)<2.
又由于h(x+1)的圖象可以看作由函數(shù)h(x)的圖象向左平移1個(gè)單位得到.
∴h(x+1)的最大值為2.
故選C.
點(diǎn)評(píng):本題考查的是分段函數(shù)、二次函數(shù)、絕對(duì)值函數(shù)等知識(shí)的綜合類問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了分類討論的思想、數(shù)形結(jié)合的思想以及問(wèn)題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如圖所示,兩函數(shù)的圖象在第一象限只有兩個(gè)交點(diǎn)A(x1,y1),B(x2,y2),x1<x2
(1)請(qǐng)指出示意圖中曲線C1,C2分別對(duì)應(yīng)哪一個(gè)函數(shù);
(2)比較f(6)、g(6)、f(10)、g(10)的大小,并按從小到大的順序排列;
(3)設(shè)函數(shù)h(x)=f(x)-g(x),則函數(shù)h(x)的兩個(gè)零點(diǎn)為x1,x2,如果x1∈[a,a+1],x2∈[b,b+1],其中a,b為整數(shù),指出a,b的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
ex
2
-f′(1)•x,g(x)=
3x
2
-
2a
x
-f(x)(其中a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)在區(qū)間[2,+∞)上為增函數(shù),求a的取值范圍;
(3)設(shè)函數(shù)h(x)=x2-mx+4,當(dāng)a=1時(shí),若存在x1∈(0,1],對(duì)任意的x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年寧夏重點(diǎn)高中高考數(shù)學(xué)模擬試卷8(解析版) 題型:選擇題

設(shè)函數(shù)h(x)=其中f(x)=|x|,g(x)=-(x-1)2+3,則h(x+1)的最大值為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省重點(diǎn)高中協(xié)作體高考奪標(biāo)預(yù)測(cè)數(shù)學(xué)試卷(7)(解析版) 題型:選擇題

設(shè)函數(shù)h(x)=其中f(x)=|x|,g(x)=-(x-1)2+3,則h(x+1)的最大值為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案