分析 (I)根據(jù)二次函數(shù)的性質(zhì)判斷g(x)的單調(diào)性,根據(jù)最值列出方程組解出a,b;
(II)化簡(jiǎn)不等式,分離參數(shù)得k≤($\frac{1}{{2}^{x}}$)2-$\frac{2}{{2}^{x}}$+1在[-1,1]上恒成立,設(shè)t=$\frac{1}{{2}^{x}}$,利用換元法得出h(t)=t2-2t+1在[$\frac{1}{2}$,2]上的最小值即可得出a的范圍.
解答 解:(Ⅰ)∵g(x)的函數(shù)圖象開(kāi)口向上,對(duì)稱軸為x=1,
∴g(x)在區(qū)間[2,3]上是增函數(shù),
故$\left\{\begin{array}{l}{g(2)=1}\\{g(3)=4}\end{array}\right.$,即$\left\{\begin{array}{l}{1+b=1}\\{3a+1+b=4}\end{array}\right.$,
解得a=1,b=0.
(Ⅱ)由已知可得f(x)=x+$\frac{1}{x}$-2,
∵不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,即2x+$\frac{1}{{2}^{x}}$-2-k•2x≥0在[-1,1]上恒成立,
∴k≤($\frac{1}{{2}^{x}}$)2-$\frac{2}{{2}^{x}}$+1在[-1,1]上恒成立,
令t=$\frac{1}{{2}^{x}}$,則k≤t2-2t+1=(t-1)2恒成立,t∈[$\frac{1}{2}$,2],
設(shè)h(t)=(t-1)2,則hmin(t)=h(1)=0,
∴k≤0.
∴k的取值范圍是(-∞,0].
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),函數(shù)最值的計(jì)算,函數(shù)恒成立問(wèn)題研究,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 3 | C. | 0 | D. | -16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ω=2 | B. | 函數(shù)f(x)的對(duì)稱軸為x=-$\frac{π}{2}$+kx(k∈Z) | ||
C. | 函數(shù)f(x)的對(duì)稱中心為($\frac{π}{2}$+kx,0)(k∈Z) | D. | 函數(shù)f(x)在[$\frac{π}{2}$,$\frac{2π}{3}$]上的最小值為-$\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,6) | B. | (1,2) | C. | (-1,3) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$-$\sqrt{2}$ | B. | 1+$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$+$\sqrt{2}$ | C. | 1-$\sqrt{2}$,1+$\sqrt{2}$ | D. | 2-$\sqrt{2}$,2+$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com