先閱讀下列①、②兩個問題,再解決后面的(Ⅰ)、(Ⅱ)兩個小題:
①已知a1,a2∈R,且a1+a2=1,求證:a12+22
1
2

證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2x+a12+a22,因為對一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,從而得a12+a22
1
2

②同理可證若a1,a2,a3∈R,且a1+a2+a3=1,則a12+a22+a32
1
3

(Ⅰ)若a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述結(jié)論的推廣式;
(Ⅱ)參考上述證法,對你推廣的結(jié)論加以證明.
考點:函數(shù)模型的選擇與應(yīng)用,歸納推理
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)由已知中已知a1,a2∈R,a1+a2=1,求證a12+a22
1
2
,及整個式子的證明過程,我們根據(jù)歸納推理可以得到一個一般性的公式,若a1,a2,…,an∈R,a1+a2+…+an=1,則a12+a22+…+an2
1
n
;
(Ⅱ)但此公式是由歸納推理得到的,其正確性還沒有得到驗證,觀察已知中的證明過程,我們可以類比對此公式進行證明.
解答: 解:(Ⅰ)若a1,a2,…,an∈R,a1+a2+…+an=1,求證:a12+a22+…+an2
1
n
------------------(5分)
(Ⅱ)證明:構(gòu)造函數(shù)
f(x)=(x-a12+(x-a22+…+(x-an2
=nx2-2(a1+a2+…+an)x+a12+a22+…+an2
=nx2-2x+a12+a22+…+an2
因為對一切x∈R,都有f(x)≥0,所以△=4-4n(a12+a22+…+an2)≤0
從而證得:a12+a22+…+an2
1
n
(13分)
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想);(3)對歸納得到的一般性結(jié)論進行證明.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)9,a,b依次構(gòu)成公差小于0的等差數(shù)列,且9,a+2,b+20依次構(gòu)成等比數(shù)列{an}的前三項,記數(shù)列{an}的前n項和為Sn,則Sn的最小值為( 。
A、
16
3
B、6
C、
27
4
D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-xcsx的圖象,只可能是下列各圖中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x≥-13,關(guān)于x的不等式|x-3|-|2x+10|+x+15-2|a+13|≥0的解集不為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2cosθ
y=2+2sinθ
(θ為參數(shù)).若曲線C1,C2有公共點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

邊長為2的菱形ABCD中,∠A=60°,沿BD折成直二面角,過點A作PA⊥平面ABC,且AP=2
3

(Ⅰ)求證:PA∥平面DBC;
(Ⅱ)求三棱錐P-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x4+5x3-27x2-101x-70的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式:kx2-2(k-1)x+k+2>0(k∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,點D是AB的中點.四面體B1-BCD的體積是2,求異面直線DB1與CC1所成的角.

查看答案和解析>>

同步練習冊答案