設(shè)函數(shù).

(Ⅰ)畫出的圖象;
(Ⅱ)設(shè)A=求集合A;
(Ⅲ)方程有兩解,求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ)

解析試題分析:(1)需將函數(shù)解析式改寫成分段函數(shù)后在畫圖(2)利用整體思想把先看成整體,然后再去絕對(duì)值(3)方程有兩個(gè)解即函數(shù)和函數(shù)的圖像有兩個(gè)交點(diǎn),利用數(shù)形結(jié)合思想分析問題
試題解析:(Ⅰ)  圖像如圖(1)所示

(Ⅱ) 即  
 (舍)或  
(Ⅲ)由圖像(2)分析可知當(dāng)方程有兩解時(shí), 

考點(diǎn):(1)函數(shù)圖像的畫法 (2)一元二次不等式和絕對(duì)值不等式(3)數(shù)形結(jié)合思想

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù),,記
(1)求函數(shù)的定義域及其零點(diǎn);
(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)
(2)要使整幢寫字樓每平方米的平均開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),點(diǎn)、在函數(shù)的圖象上,
點(diǎn)在函數(shù)的圖象上,設(shè)
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和為;
(3)已知,記數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算:(1);   (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,是一個(gè)矩形花壇,其中AB= 4米,AD = 3米.現(xiàn)將矩形花壇擴(kuò)建成一個(gè)更大的矩形花園,要求:B在上,D在上,對(duì)角線過C點(diǎn), 且矩形的面積小于64平方米.

(Ⅰ)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長度是多少時(shí),矩形的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市電力公司在電力供不應(yīng)求時(shí)期,為了居民節(jié)約用電,采用“階梯電價(jià)”方法計(jì)算電價(jià),每月用電不超過度時(shí),按每度元計(jì)費(fèi),每月用電超過度時(shí),超過部分按每度元計(jì)費(fèi),每月用電超過度時(shí),超過部分按每度元計(jì)費(fèi)
(Ⅰ)設(shè)每月用電度,應(yīng)交電費(fèi)元,寫出關(guān)于的函數(shù);
(Ⅱ)已知小王家第一季度繳費(fèi)情況如下:

月份
1
2
3
合計(jì)
繳費(fèi)金額
87元
62元
45元8角
194元8角
問:小王家第一季度共用了多少度電?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),使得成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.
下面我們來考慮兩個(gè)函數(shù):.
(Ⅰ)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說明理由;
(Ⅱ)若,函數(shù)上的上界是,求的取值范圍;
(Ⅲ)若函數(shù)上是以為上界的有界函數(shù), 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案