已知且,函數(shù),,記
(1)求函數(shù)的定義域及其零點(diǎn);
(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.
(1),0;(2)
解析試題分析:(1)均有意義時,才有意義,即兩個對數(shù)的真數(shù)均大于0.解關(guān)于x的不等式即可得出的定義域,函數(shù)的零點(diǎn),即,整理得,對數(shù)相等時底數(shù)相同所以真數(shù)相等,得到,基礎(chǔ)x即為函數(shù)的零點(diǎn)(2)即,,應(yīng)分和兩種情況討論的單調(diào)性在求其值域。有分析可知在這兩種情況下均為單調(diào)函數(shù),所以的值域即為。解關(guān)于m的不等式即可求得m。所以本問的重點(diǎn)就是討論單調(diào)性求其值域。
試題解析:(1)解:(1)(且)
,解得,
所以函數(shù)的定義域為 2分
令,則(*)方程變?yōu)?br />,,即
解得, 3分
經(jīng)檢驗是(*)的增根,所以方程(*)的解為,
所以函數(shù)的零點(diǎn)為, 4分
(2)∵函數(shù)在定義域D上是增函數(shù)
∴①當(dāng)時, 在定義域D上是增函數(shù)
②當(dāng)時,函數(shù)在定義域D上是減函數(shù) 6分
問題等價于關(guān)于的方程在區(qū)間內(nèi)僅有一解,
∴①當(dāng)時,由(2)知,函數(shù)F(x)在上是增函數(shù)
∴∴只需 解得:或
∴②當(dāng)時,由(2)知,函數(shù)F(x)在上是減函數(shù)
∴ ∴只需 解得: 10分
綜上所述,當(dāng)時:;當(dāng)時,或(12分)
考點(diǎn):對數(shù)函數(shù)的定義域,函數(shù)的零點(diǎn),復(fù)合函數(shù)單調(diào)性
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實數(shù)a的取值范圍.
(2)設(shè)g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=f(x),求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某家具廠生產(chǎn)一種兒童用組合床柜的固定成本為20000元,每生產(chǎn)一組該組合床柜需要增加投入100元,已知總收益滿足函數(shù):,其中是組合床柜的月產(chǎn)量.
(1)將利潤元表示為月產(chǎn)量組的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時,該廠所獲得利潤最大?最大利潤是多少?(總收益=總成本+利潤).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題.實踐證明,聲音強(qiáng)度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當(dāng)聲音強(qiáng)度滿足時,求對應(yīng)的聲音能量滿足的等量關(guān)系式;
(2)當(dāng)人們低聲說話,聲音能量為時,聲音強(qiáng)度為30分貝;當(dāng)人們正常說話,聲音能量為時,聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(Ⅱ)若對任意,都有成立,且函數(shù)的圖象經(jīng)過點(diǎn),
求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)時下,網(wǎng)校教學(xué)越越受到廣大學(xué)生的喜愛,它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢,假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷售價格為4元/套時,每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資、辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)畫出的圖象;
(Ⅱ)設(shè)A=求集合A;
(Ⅲ)方程有兩解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com