17.已知函數(shù)$f(x)=a{x^3}-2{x^2}+\frac{1}{2}x+\frac{1}{3}$,若f(x)至少存在一個(gè)大于0的零點(diǎn)x0,則實(shí)數(shù)a的取值范圍是( 。
A.$(-∞,-\frac{10}{3}]$B.$[-\frac{10}{3},+∞)$C.$(-∞,\frac{7}{6}]$D.$[\frac{7}{6},+∞)$

分析 根據(jù)三次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象和性質(zhì),可得當(dāng)a<0時(shí)和a=0時(shí)均滿足條件,故實(shí)數(shù)a的取值范圍包括所有非正數(shù),進(jìn)而用排除法,可得答案.

解答 解:當(dāng)a<0時(shí),
若x→+∞,則$f(x)=a{x^3}-2{x^2}+\frac{1}{2}x+\frac{1}{3}$→-∞,而f(0)=$\frac{1}{3}$>0,
故f(x)至少存在一個(gè)大于0的零點(diǎn)x0,滿足條件;
故排除B,D;
當(dāng)a=0時(shí),$f(x)=-2{x}^{2}+\frac{1}{2}x+\frac{1}{3}$有兩個(gè)異號(hào)的零點(diǎn),滿足條件;
故排除A,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn)的判斷定理,零點(diǎn)的存在性及個(gè)數(shù)判斷,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某次數(shù)學(xué)測(cè)試之后,數(shù)學(xué)組的老師對(duì)全校數(shù)學(xué)總成績(jī)分布在[105,135)的n名同學(xué)的19題成績(jī)進(jìn)行了分析,數(shù)據(jù)整理如下:
 組數(shù) 分組 19題滿分人數(shù) 19題滿分人數(shù)占本組人數(shù)比例
 第一組[105,110) 15 0.3
 第二組[110,115) 30 0.3
 第三組[115,120) x 0.4
 第四組[120,125) 100 0.5
 第五組[125,130) 120 0.6
 第六組[130,135) 195 y
(Ⅰ)補(bǔ)全所給的頻率分布直方圖,并求n,x,y的值;
(Ⅱ)現(xiàn)從[110,115)、[115,120)兩個(gè)分?jǐn)?shù)段的19題滿分的試卷中,按分層抽樣的方法抽取6份進(jìn)行展出,并從6份試卷中選出兩份作為優(yōu)秀試卷,求優(yōu)秀試卷分別來(lái)自兩個(gè)分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=(ex-e-x)x,f(log5x)+f(log${\;}_{\frac{1}{5}}$x)≤2f(1),則x的取值范圍是(  )
A.[$\frac{1}{5}$,1]B.[1,5]C.[$\frac{1}{5}$,5]D.(-∞,$\frac{1}{5}$]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示的程序框圖的算法思路來(lái)源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b的值分別是21,28,則輸出a的值為( 。
A.14B.7C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.向量$\overrightarrow{a}$,$\overrightarrow$均為非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若集合A={x|x2-x-6>0},集合B={x|-1<x<4},則A∩B等于(  )
A.B.(-2,3)C.(2,4)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.a(chǎn)1=$\frac{1}{2}$‘
a2=$\frac{1}{3}$(1-a1)=$\frac{1}{6}$;
a3=$\frac{1}{4}$(1-a1-a2)=$\frac{1}{12}$;
a4=$\frac{1}{5}$(1-a1-a2-a3)=$\frac{1}{20}$;

照此規(guī)律,當(dāng)n∈N*時(shí),an=$\frac{1}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.觀察下列等式:
13=12,13+23=32,13+23+33=62,13+23+33+43=102,…
根據(jù)上述規(guī)律,第n個(gè)等式為13+23+33+…+n3=(1+2+3+…+n)2=[$\frac{n(n+1)}{2}$]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題中,真命題為(  )
A.?x0∈R,e${\;}^{{x}_{0}}$≤0
B.?x∈R,2x>x2
C.已知a,b為實(shí)數(shù),則a+b=0的充要條件是$\frac{a}$=-1
D.已知a,b為實(shí)數(shù),則a>1,b>1是ab>1的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案