【題目】函數(shù) 是偶函數(shù),求解下列問(wèn)題.
(1)求θ;
(2)將函數(shù)y=f(x)的圖象先縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的 倍,再向左平移 個(gè)單位,然后向上平移1個(gè)單位得到y(tǒng)=g(x)的圖象,若關(guān)于x的方程 在 有且只有兩個(gè)不同的根,求m的范圍.
【答案】
(1)
解: ,
而f(x)為偶函數(shù),則 即
∴ ,k∈Z
又∵ ,∴
(2)
解:f(x)=2cos2x,
∴ 可化為 與 在
1<m≤2或﹣2≤m<﹣1
【解析】分析:(1)先用輔助角法將函數(shù)轉(zhuǎn)化為一個(gè)角的一種三角函數(shù),再由其為偶函數(shù)求解.(2)由(1)知f(x)然后嚴(yán)格按照變換要求得到g(x),再將方程 轉(zhuǎn)化為 求解.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,2016年雙11期間,某購(gòu)物平臺(tái)的銷售業(yè)
績(jī)高達(dá)1207億人民幣。與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.9,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為140次.
(1)請(qǐng)完成下表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.5%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量:
①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列;
②求的數(shù)學(xué)期望和方差.
(,其中)
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 140 | ||
對(duì)商品不滿意 | 10 | ||
合計(jì) | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=2sin(2x+φ)的圖象過(guò)點(diǎn)( ,1),則它的一條對(duì)稱軸方程可能是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在冬季供暖時(shí)減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:①y= 是奇函數(shù);
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)f(x)=2x﹣x2在R上有3個(gè)零點(diǎn);
④函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到函數(shù) 的圖象.
其中正確命題的序號(hào)是 . (把正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>0,b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓C上一點(diǎn),直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N.求證:|AN||BM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面波動(dòng)可分別由函數(shù) 和 描述,如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá),在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開(kāi)始工作,那么,原本平靜的水面將呈現(xiàn)的狀態(tài)是( )
A.仍保持平靜
B.不斷波動(dòng)
C.周期性保持平靜
D.周期性保持波動(dòng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對(duì)角線的交點(diǎn).求證:
(1)C1O∥面AB1D1;
(2)面BDC1∥面AB1D1 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com