敘述隨機(jī)事件的頻率與概率的關(guān)系時(shí)有如下說(shuō)法:
①頻率就是概率;
②頻率是客觀存在的,與實(shí)驗(yàn)次數(shù)無(wú)關(guān);
③頻率是隨機(jī)的,在試驗(yàn)前不能確定;
④隨著實(shí)驗(yàn)次數(shù)的增加,頻率一般會(huì)越來(lái)越接近概率.
其中正確命題的序號(hào)為
 
考點(diǎn):概率的基本性質(zhì)
專題:概率與統(tǒng)計(jì)
分析:根據(jù)隨機(jī)事件的頻率與概率的概念,對(duì)題目中的命題進(jìn)行分析判斷即可.
解答: 解:根據(jù)隨機(jī)事件的頻率與概率的意義知,
頻率具有隨機(jī)性,它反映的是某一隨機(jī)事件出現(xiàn)的頻繁程度,是隨機(jī)事件出現(xiàn)的可能性;
概率是一個(gè)客觀常數(shù),它反映了隨機(jī)事件的屬性;
∴頻率不是概率,①錯(cuò)誤;
頻率不是客觀存在的,它與實(shí)驗(yàn)次數(shù)有關(guān),②錯(cuò)誤;
頻率是隨機(jī)的,在試驗(yàn)前不能確定,③正確;
隨著實(shí)驗(yàn)次數(shù)的增加,頻率一般會(huì)越來(lái)越接近概率,④正確.
綜上,正確的命題序號(hào)為③④.
故答案為:③④.
點(diǎn)評(píng):本題考查了隨機(jī)事件的頻率與概率的概念的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,A={1,3,5,7},B={x|2≤x≤8},C={x|a-1≤x≤2a+1}.
(1)求A∩B,∁UB;
(2)若(∁UB)∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(1+x)-ln(1-x),有如下結(jié)論:
①?x∈(-1,1),有f(-x)=f(x);
②?x∈(-1,1),有f(-x)=-f(x);
③?x1,x2∈(-1,1),有
f(x1)-f(x2)
x1-x2
>0;
④?x1,x2∈(0,1),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

其中正確結(jié)論的序號(hào)是
 
.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-a|,g(x)=2x2+3ax+1,其中a>0.
(1)若f(x)在x≥1上是單調(diào)函數(shù),求a的取值范圍;
(2)若f(0)=g(0),求函數(shù)h(x)=f(x)+g(x),x≥1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知圓C1:(x-2)2+(y-2)2=4,動(dòng)圓C2過(guò)點(diǎn)(2,0)和(-2,0),記兩圓的交點(diǎn)為A、B,
(1)如果直線AB的方程為x-y-2=0,求圓C2的方程;
(2)設(shè)M為線段AB的中點(diǎn),求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是( 。 
 
A、
1
6
B、
25
24
C、
3
4
D、
11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線ρ=2sinθ與ρsinθ-ρcosθ=2相交于點(diǎn)A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間直線a、b、c,平面α,則下列命題中真命題的是( 。
A、若a⊥b,c⊥b,則a∥c
B、若a∥c,c⊥b,則b⊥a
C、若a與b是異面直線,a與c是異面直線,則b與c也是異面直線.
D、若a∥α,b∥α,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AE是的⊙O切線,A是切點(diǎn),AD⊥OE于點(diǎn)D,割線EC交⊙O于B,C兩點(diǎn).
(1)證明:O,D,B,C四點(diǎn)共線;
(2)設(shè)∠DBC=50°,∠ODC=30°,求∠OEC的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案