【題目】如圖,在中,,點在線段上.過點作交于點,將沿折起到的位置(點與重合),使得.
(Ⅰ)求證:.
(Ⅱ)試問:當(dāng)點在線段上移動時,二面角的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
【答案】(Ⅰ)證明見解析;(Ⅱ)答案見解析.
【解析】分析:(1)由已知條件,結(jié)合線面垂直的判定定理和性質(zhì)定理,即可得到.
(2)過點作,則,,兩兩垂直,以B為坐標(biāo)原點,以, 的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系.設(shè),應(yīng)用空間向量,分別求得兩平面的法向量,計算兩平面法向量夾角,證明點在線段上移動時,二面角的平面角的余弦值為定值,且定值為.
詳解:證明:(Ⅰ)在中,
因為,所以,所以,,
又因為,平面,所以平面.
又因為平面,所以.
(Ⅱ)在平面內(nèi),過點作于點,
由(Ⅰ)知平面,所以,
又因為,平面,所以平面.
在平面內(nèi)過點作直線,則平面.
如圖所示,以為坐標(biāo)原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系.
設(shè),
又因為,
所以,.
在中,,
所以,,所以,
所以,,.
從而,.
設(shè)是平面的一個法向量,
所以,即,
所以,
取,得是平面的一個法向量.
又平面的一個法向量為,
設(shè)二面角的平面角為,
則 .
因此當(dāng)點在線段上移動時,二面角的平面角的余弦值為定值,且定值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:)的影響,對近年的年宣傳費和年銷售量作了初步統(tǒng)計和處理,得到的數(shù)據(jù)如下:
年宣傳費(單位:萬元) | ||||
年銷售量(單位:) |
,.
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出關(guān)于的線性回歸方程;
(3)若公司計劃下一年度投入宣傳費萬元,試預(yù)測年銷售量的值.
參考公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通6座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機(jī)制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就是越高,具體浮動情況如下表:
交強(qiáng)險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,∠PAC=∠BAC=90°,PA=PB,點D,F分別為BC,AB的中點.
(1)求證:直線DF∥平面PAC;
(2)求證:PF⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),給定數(shù)列,其中,.
(1)若為常數(shù)數(shù)列,求a的值;
(2)當(dāng)時,探究能否是等比數(shù)列?若是,求出的通項公式;若不是,說明理由;
(3)設(shè),數(shù)列的前n項和為,當(dāng)a=1時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求證:二面角C﹣PB﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=a+bx與,若對于任意一點,過點作與X軸垂直的直線,交函數(shù)y=a+bx的圖象于點,交函數(shù)的圖象于點,定義:,若則用函數(shù)y=a+bx來擬合Y與X之間的關(guān)系更合適,否則用函數(shù)來擬合Y與X之間的關(guān)系
(1)給定一組變量P1(1,4),P2(2,5),p3(3,6),p4(4,5.5),p5(5,5.6),p6(6,5.8),對于函數(shù)與函數(shù),試?yán)枚x求Q1,Q2的值,并判斷哪一個更適合作為點PI(xi,yi)(i=1,2,3…6)中的Y與X之間的擬合函數(shù);
(2)若一組變量的散點圖符合圖象,試?yán)孟卤碇械挠嘘P(guān)數(shù)據(jù)與公式求y對x的回歸方程, 并預(yù)測當(dāng)時,的值為多少.
表中的
(附:對于一組數(shù)據(jù),其回歸直線方程的斜率和截距的最小二乘估計分別為)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com