某次知識(shí)競(jìng)賽規(guī)則如下:在主辦方預(yù)設(shè)的5個(gè)問題中,選手若能連續(xù)正確回答出兩個(gè)問題,即停止答題,晉級(jí)下一輪.假設(shè)某選手正確回答每個(gè)問題的概率都是0.8,且每個(gè)問題的回答結(jié)果相互獨(dú)立,則該選手恰好回答了4個(gè)問題就晉級(jí)下一輪的概率等于   .

 

0.128

【解析】依題意得,事件“該選手恰好回答了4個(gè)問題就晉級(jí)下一輪”意味著“該選手在回答前面4個(gè)問題的過程中,要么第一個(gè)問題答對(duì)且第二個(gè)問題答錯(cuò),第三、四個(gè)問題都答對(duì)了,要么第一、二個(gè)問題都答錯(cuò);第三、四個(gè)問題都答對(duì)了”,因此所求事件的概率等于[0.8×(1-0.8)+(1-0.8)2]×0.82=0.128.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

已知等比數(shù)列{an}的公比q=2,其前4項(xiàng)和S4=60,a2等于(  )

(A)8(B)6(C)-8(D)-6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

某運(yùn)輸公司有12名駕駛員和19名工人,8輛載重為10噸的甲型卡車和7輛載重為6噸的乙型卡車.某天需運(yùn)往A地至少72噸的貨物,派用的每輛車需滿載且只運(yùn)送一次,派用的每輛甲型卡車需配2名工人,運(yùn)送一次可得利潤(rùn)450;派用的每輛乙型卡車需配1名工人,運(yùn)送一次可得利潤(rùn)350.該公司合理計(jì)劃當(dāng)天派用兩類卡車的車輛數(shù),可得最大利潤(rùn)z=(  )

(A)4650(B)4700

(C)4900(D)5000

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:填空題

Sn是等差數(shù)列{an}的前n項(xiàng)和,S8-S3=10,S11的值為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

已知數(shù)列{an}為等差數(shù)列,a3+a7+a11=4π,tan(a1+a13)=(  )

(A)-(B)±(C)±(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十第十章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

將一枚硬幣連擲5,如果出現(xiàn)k次正面向上的概率等于出現(xiàn)k+1次正面向上的概率,那么k的值為(  )

(A)0 (B)1 (C)2 (D)3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十四選修4-2第一節(jié)練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,一種線性變換對(duì)應(yīng)的2×2矩陣為.

(1)求點(diǎn)A(,3)在該變換作用下的象.

(2)求圓x2+y2=1在該變換作用下的新曲線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十八選修4-4第二節(jié)練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個(gè)交點(diǎn).當(dāng)α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)α=時(shí),這兩個(gè)交點(diǎn)重合.

(1)分別說明C1,C2是什么曲線,并求出ab的值.

(2)設(shè)當(dāng)α=時(shí),lC1,C2的交點(diǎn)分別為A1,B1,當(dāng)α=-時(shí),lC1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十九選修4-5第一節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè)f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),f(7+|t|)>f(1+t2),求實(shí)數(shù)t的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案