如圖,已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a為正常數(shù)).過(guò)弦AB的中點(diǎn)M作平行于x軸的直線交拋物線C于點(diǎn)D,連接AD、BD得到△ABD.
(i)求實(shí)數(shù)a,b,k滿足的等量關(guān)系;
(ii)△ABD的面積是否為定值?若為定值,求出此定值;若不是定值,請(qǐng)說(shuō)明理由.

【答案】分析:(Ⅰ)依拋物線的定義可知:4,可求p,進(jìn)而可求拋物線方程
(Ⅱ)(i)聯(lián)立直線與拋物線方程,消去x,根據(jù)方程的根與系數(shù)關(guān)系可求y1+y2,y1y2.然后結(jié)合|y1-y2|=a,可得a,b,k之間的關(guān)系
(ii)由(i)可求AB中點(diǎn)M,進(jìn)而可求點(diǎn)D,代入三角形的面積公式,結(jié)合已知可證
解答:解:(Ⅰ)依題意:4,解得p=2.
∴拋物線方程為y2=4x.
(Ⅱ)(i)由方程組消去x得:ky2-4y+4b=0.(※)
依題意可知:k≠0.
由已知得y1+y2=,y1y2=
由|y1-y2|=a,得
依題意:,解得p=2.
∴拋物線方程為y2=4x.
(Ⅱ)(i)由方程組消去x得:ky2-4y+4b=0.(※)
依題意可知:k≠0.
由已知得y1+y2=,y1y2=
由|y1-y2|=a,得,即,整理得16-16kb=(ak)2
所以(ak)2=16(1-kb)
(ii)由(i)知AB中點(diǎn)M(),所以點(diǎn)D(),
依題意知
=
又因?yàn)榉匠蹋ā┲信袆e式△=16-16kb>0,得1-kb>0.
所以,由(Ⅱ)可知1-kb=,
所以
又a為常數(shù),故△ABD的面積為定值.
點(diǎn)評(píng):本題主要考查了利用拋物線的定義求解拋物線的方程,直線與曲線的相交關(guān)系的應(yīng)用及方程的根與系數(shù)關(guān)系的應(yīng)用,還考查了一定的邏輯推理與運(yùn)算的能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8相交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),直線l與圓O相切,切點(diǎn)在劣弧AB(含A、B兩點(diǎn))上,且與拋物線C相交于M、N兩點(diǎn),d是M、N兩點(diǎn)到拋物線C的焦點(diǎn)的距離之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•武昌區(qū)模擬)如圖,已知拋物線C:y2=4x,過(guò)點(diǎn)A(1,2)作拋物線C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,證明直線PQ過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(Ⅱ)假設(shè)直線PQ過(guò)點(diǎn)T(5,-2),請(qǐng)問(wèn)是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù)?如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州一模)如圖,已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)F的直線l與拋物線C交于A(x1,y1)(y1>0),B(x2,y2)兩點(diǎn),T為拋物線的準(zhǔn)線與x軸的交點(diǎn).
(1)若
TA
TB
=1
,求直線l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=4x焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F且與拋物線C相交于A、B兩點(diǎn).
(Ⅰ)若線段AB的中點(diǎn)在直線y=2上,求直線l的方程;
(Ⅱ)若|AB|=20,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案