16.對(duì)于實(shí)數(shù)x,用[x]表示不超過(guò)x的最大整數(shù),如[0.32]=0,[5.68]=5.若n為正整數(shù),an=[$\frac{n}{4}$],Sn為數(shù)列{an}的前n項(xiàng)和,則S40=( 。
A.190B.180C.170D.160

分析 an=[$\frac{n}{4}$],可得n=1,2,3時(shí),an=0;n=4,5,6,7,an=1;n=8,9,10,11,an=2;…,n=36,37,38,39,an=9.n=40,an=10.即可得出.

解答 解:an=[$\frac{n}{4}$],可得n=1,2,3時(shí),an=0;
n=4,5,6,7,an=1;
n=8,9,10,11,an=2;
n=12,13,14,15,an=3;
…,
n=36,37,38,39,an=9.
n=40,an=10.
則S40=0+4×(1+2+…+8+9)+10=$4×\frac{9×(1+9)}{2}$+10=190.

點(diǎn)評(píng) 本題考查了等差數(shù)列的求和公式、取整函數(shù)的性質(zhì),考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且圓C′:x2+y2=1過(guò)橢圓C的上頂點(diǎn)和右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程和離心率;
(2)已知直線l與橢圓C只有1個(gè)交點(diǎn),探究:是否存在兩個(gè)定點(diǎn)P(x1,0)、Q(x2,0),且x1<x2,使得P、Q到直線l的距離之積為1.如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若圓C經(jīng)過(guò)點(diǎn)A(1,2)及點(diǎn)B(3,1),且以AB為直徑,則圓C的標(biāo)準(zhǔn)方程為(x-2)2+(y-$\frac{3}{2}$)2=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ln(x+2a)-ax,a>0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)記f(x)的最大值為M(a),若a2>a1>0且M(a1)=M(a2),求證:${a_1}{a_2}<\frac{1}{4}$;
(Ⅲ)若a>2,記集合{x|f(x)=0}中的最小元素為x0,設(shè)函數(shù)g(x)=|f(x)|+x,求證:x0是g(x)的極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是(2)(3).
(1)A′C⊥BD;
(2)∠BA′C=90°;
(3)四面體A′-BCD的體積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1中,與平面ACC1A1平行的棱共有(  )
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等比數(shù)列{an}中,a1=3,a8=9,函數(shù)f(x)=x(x-a1)(x-a2)…(x-a8),則f'(0)=( 。
A.36B.39C.312D.315

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.為了得到函數(shù)y=3cos2x,x∈R的圖象,只需要把函數(shù)y=3cos(2x+$\frac{π}{5}$),x∈R的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{5}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{5}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{10}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{10}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式x(2-x)≥0的解集是[0,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案