已知變量x,y滿足的約束條件
x+y≤1
x-y≤1
x≥a
,若x+2y≥-5恒成立,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):簡單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,則x+2y≥-5恒成立可化為圖象中的陰影部分在直線x+2y=-5的上方,從而解得.
解答: 解:由題意作出其平面區(qū)域,

則x+2y≥-5恒成立可化為圖象中的陰影部分在直線x+2y=-5的上方,
則實(shí)數(shù)a的取值范圍為[-1,1].
故答案為:[-1,1].
點(diǎn)評:本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在多面體ABCDEF中,點(diǎn)O是矩形ABCD的對角線的交點(diǎn),三角形CDE是等邊三角形,棱EF∥BC且EF=
1
2
BC=2.求證:FO∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義
a
?
b
=|
a
|•|
b
|sinθ(θ為
a
b
的夾角),給出下列命題.
a
?
b
=
b
?
a
;                  
②λ(
a
?
b
)=(λ
a
)?
b
;
a
?(
b
+
c
)=
a
?
b
+
a
?
c
;       
a
b
?
a
?
b
=|
a
|•|
b
|;
⑤設(shè)
a
=(x1,y1),
b
=(x2,y2),則
a
?
b
=|x1y2-x2y1|
其中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+2n(n∈N*),那么a2011的值是(  )
A、2 0112
B、2 012×2 011
C、2 009×2 010
D、2 010×2 011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a3+a5+…+a2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=
x2+ax+a
x
(x≠0),下列說法正確的是
 

①函數(shù)f(x)有兩個(gè)極值點(diǎn)x=±
a

②函數(shù)f(x)的值域?yàn)椋?∞,-2
a
+a]∪[2
a
+a,+∞);
③當(dāng)a≤1時(shí),函數(shù)f(x)在[1,+∞)是增函數(shù);
④函數(shù)f(x)的圖象與x軸有兩個(gè)公共點(diǎn)的充要條件是a>4或a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點(diǎn),實(shí)軸A1A2在x軸上,虛軸的一個(gè)端點(diǎn)為P.
(1)若實(shí)軸長為2,焦距為4,求雙曲線的標(biāo)準(zhǔn)方程;
(2)若∠A1PA2為直角,求雙曲線的離心率;
(3)若∠A1PA2為銳角,求雙曲線離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(2x+
π
6
)的部分圖象如圖所示.
(1)寫出f(x)的最小正周期及圖中x0、y0的值;
(2)求f(x)在區(qū)間[
π
12
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

改革開放以來,我國高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村2001到2005年五年間每年考入大學(xué)的人數(shù),為了方便計(jì)算,2001年編號為1,2002年編號為2,…,2005年編號為5,數(shù)據(jù)如下:
年份(x)12345
人數(shù)(y)3581113
求y關(guān)于x的回歸方程
y
=
b
x+
a
所表示的直線必經(jīng)的點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案