9.設a=2${\;}^{\frac{1}{5}}$,b=($\frac{6}{7}$)${\;}^{\frac{1}{6}}$,c=ln$\frac{3}{π}$,則(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

分析 利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=2${\;}^{\frac{1}{5}}$>20=1,
0<b=($\frac{6}{7}$)${\;}^{\frac{1}{6}}$<($\frac{6}{7}$)0=1,
c=ln$\frac{3}{π}$<ln1=0,
∴c<b<a.
故選:B.

點評 本題考查三個數(shù)的大小的求法,是基礎題,解題時要認真審題,注意指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左焦點為F(-1,0),過D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程;
(2)在y軸上,是否存在定點E,$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出E點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某飲料店某5天的日銷售收入y(單位:百元)與當天平均氣溫x(單位:℃)之間的數(shù)據(jù)如表:
x-2-1012
y54221
甲、乙、丙、丁四位同學對上述數(shù)據(jù)進行了研究,分別得到了x與y之間的四個線性回歸方程:①$\widehat{y}$=-x+3,②$\widehat{y}$=-x+2.8,③$\widehat{y}$=-x+2.6,④$\widehat{y}$=-x+2.4,其中正確的方程是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.從5名男公務員和4名女公務員中選出3人,分別派到西部的三個不同地區(qū),要求3人中既有男公務員又有女公務員,則不同的選派方法種數(shù)是( 。
A.70B.140C.420D.840

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),則2α-β的值是(  )
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.-$\frac{3π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若復數(shù)z=1+i,i為虛數(shù)單位,則(1+z)•$\overline z$=3-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知三棱柱ABC-A1B1C1的側棱垂直于底面,所有棱長都相等,若該三棱柱的頂點都在球O的表面上,且三棱柱的體積為$\frac{9}{4}$,則球O的表面積為7π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)當a=3,b=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x≤3),其圖象上任意一點P(x0,y0)處切線的斜率k≤$\frac{1}{8}$恒成立,求實數(shù)a的取值范圍;
(3)當a=b=0時,令H(x)=f(x)-$\frac{1}{x}$,G(x)=mx,若H(x)與G(x)的圖象有兩個交點A(x1,y1),B(x2,y2),求證:x1x2>2e2

查看答案和解析>>

同步練習冊答案