16.已知a=log82,b=log8$\frac{1}{2}$,c=$\frac{3}{4}$,則三個(gè)數(shù)a,b,c的大小關(guān)系正確的是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)a,b,則答案可求.

解答 解:∵a=log82=$\frac{lg2}{lg8}=\frac{lg2}{3lg2}=\frac{1}{3}$,
b=log8$\frac{1}{2}$=$\frac{lg\frac{1}{2}}{lg8}=\frac{-lg2}{3lg2}=-\frac{1}{3}$<0,c=$\frac{3}{4}$,
∴b<a<c.
故選:B.

點(diǎn)評(píng) 本題考查對(duì)數(shù)值得大小比較,考查了對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某外語(yǔ)學(xué)校的一個(gè)社團(tuán)中有7名同學(xué),其中2人只會(huì)法語(yǔ),2人只會(huì)英語(yǔ),3人既會(huì)法語(yǔ)又會(huì)英語(yǔ),現(xiàn)選派3人到法國(guó)的學(xué)校交流訪問(wèn).
(1)在選派的3人中恰有2人會(huì)法語(yǔ)的概率;
(2)在選派的3人中既會(huì)法語(yǔ)又會(huì)英語(yǔ)的人數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,則輸出S的值為( 。
A.1500B.1800C.2000D.2500

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某市在中學(xué)生綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí).其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)如表:
等級(jí) 優(yōu)秀 合格 不合格
 男生(人) 15 x 5
 女生(人) 15 3y
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
男生女生總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高一學(xué)生中隨機(jī)抽取3人.
①求所選3人中恰有2人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
②記X表示這3個(gè)人中綜合速度評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),求X的數(shù)學(xué)期望.
參考數(shù)據(jù)與公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
 P(K2>k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.過(guò)點(diǎn)P(-1,0)作曲線y=ex的切線l.
(Ⅰ)求l的方程;
(Ⅱ)若A(x1,$\frac{a}{{{e^{x_1}}}}$),B(x2,$\frac{a}{{{e^{x_2}}}}$)是直線l上的兩個(gè)不同點(diǎn),求證:x1+x2<-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=sin(?x+φ)是偶函數(shù),其圖象與直線y=1的交點(diǎn)間的最小距離是π,則( 。
A.?=2,φ=$\frac{π}{2}$B.?=2,φ=πC.?=$\frac{1}{2}$,φ=$\frac{π}{2}$D.?=$\frac{1}{2}$,φ=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知非零向量$\overrightarrow{a}$、$\overrightarrow$,|$\overrightarrow$|=2,|$\overrightarrow$-t$\overrightarrow{a}$|(t∈R)的最小值為$\sqrt{3}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示的長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,O為AC與BD的交點(diǎn),BB1=$\sqrt{2}$,M為線段B1D1的中點(diǎn).
(1)求證:MB⊥AC
(2)求三棱錐D1-ACB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知拋物線y2=ax(a>0),經(jīng)過(guò)焦點(diǎn)且傾斜角為135°的直線被拋物線所截得的弦長(zhǎng)為8,試求拋物線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案