已知函數(shù)
(I)求在區(qū)間上的最大值
(II)是否存在實數(shù)使得的圖象與的圖象有且只有三個不同的交點?若存在,求出的取值范圍;若不存在,說明理由。
:(I)
當(dāng)時,上單調(diào)遞增,

當(dāng)時,
當(dāng)時,上單調(diào)遞減,

綜上,
(II)函數(shù)的圖象與的圖象有且只有三個不同的交點,即函數(shù)
的圖象與軸的正半軸有且只有三個不同的交點[.]

當(dāng)時,是增函數(shù);
當(dāng)時,是減函數(shù);
當(dāng)時,是增函數(shù);
當(dāng)時,

當(dāng)充分接近0時,當(dāng)充分大時,
要使的圖象與軸正半軸有三個不同的交點,必須且只須
  即
所以存在實數(shù),使得函數(shù)的圖象有且只有三個不同的交點,的取值范圍為
本小題主要考查函數(shù)的單調(diào)性、極值、最值等基本知識,考查運用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法,考查運算能力,考查函數(shù)與方程、數(shù)形結(jié)合、分類與整合等數(shù)學(xué)思想方法和分析問題、解決問題的能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+) 
(1)證明: 當(dāng)mM時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則mM。 
(2)當(dāng)mM時,求函數(shù)f(x)的最小值。
(3)求證: 對每個mM,函數(shù)f(x)的最小值都不小于1。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)="3" 700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)="460x+5" 000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
(3)求邊際利潤函數(shù)MP(x)的單調(diào)遞減區(qū)間,并說明單調(diào)遞減在本題中的實際意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽開______時它的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)某物體一天中的溫度T是時間t的函數(shù),已知,其中溫度的單位是℃,時間的單位是小時.中午12:00相應(yīng)的t=0,中午12:00以后相應(yīng)的t取正數(shù),中午12:00以前相應(yīng)的t取負(fù)數(shù)(如早上8:00相應(yīng)的t=-4,下午16:00相應(yīng)的t=4).若測得該物體在早上8:00的溫度為8℃,中午12:00的溫度為60℃,下午13:00的溫度為58℃,且已知該物體的溫度早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度T關(guān)于時間t的函數(shù)關(guān)系式;
(2)該物體在上午10:00到下午14:00這段時間中(包括端點)何時溫度最高?最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

判斷函數(shù)
處是否可導(dǎo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在(-∞,4]上的減函數(shù)f(x)滿足f(m-sinx)≤f(+cos2x)對任意x∈R都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求下列函數(shù)的導(dǎo)數(shù).
(1);   (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是定義在R上的偶函數(shù),對任意的,都有成立,若,則          

查看答案和解析>>

同步練習(xí)冊答案