9.正四棱錐底面邊長為a,側棱長為a,則其表面積為$(\sqrt{3}+1){a}^{2}$.

分析 求出底面積為a2,側面積為$4•\frac{\sqrt{3}}{4}{a}^{2}$=$\sqrt{3}{a}^{2}$,即可求出表面積.

解答 解:由題意,底面積為a2,側面積為$4•\frac{\sqrt{3}}{4}{a}^{2}$=$\sqrt{3}{a}^{2}$,
∴表面積為$(\sqrt{3}+1){a}^{2}$.
故答案為$(\sqrt{3}+1){a}^{2}$.

點評 本題考查表面積的計算,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)$f(x)=lnx-\frac{1}{2}a{x}^{2}+x,a∈R$.
(1)當a=0時,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)令g(x)=f(x)-(ax-1),求函數(shù)g(x)的極值;
(3)若a=-2,正實數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明:${x}_{1}+{x}_{2}≥\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設定義在R上的函數(shù)f(x)滿足f(2x)=2f(x)+1且,f(1)=2.
(1)求f(0),f(2),f(4)的值;
(2)若f(x)為一次函數(shù),且g(x)=(x-m)f(x)在(3,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若拋物線y2=2px(p>0)上的點$({x}_{0},2)({x}_{0}>\frac{p}{2})$到其焦點的距離為$\frac{5}{2}$,則p=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=log2(1-x)-log2(1+x).
(1)求函數(shù)f(x)的定義域并判斷f(x)的奇偶性;
(2)判斷f(x)在定義域上的單調(diào)性,并證明;
(3)方程f(x)=x+1是否有根?如果有根x0,請求出一個長度為$\frac{1}{4}$的區(qū)間(a,b),使x0∈(a,b);如果沒有,請說明理由?(注:區(qū)間(a,b)的長度=b-a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知集合A={(x,y)|(1-a)x2+2xy-ay2≤0},B={(x,y)|3x-5y≥0,x,y>0},且B⊆A,則實數(shù)a的最小值為$\frac{55}{34}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.$f(x)=\frac{1}{2}{x^2}-ax+alnx$有兩個極值點,則a的范圍是( 。
A.a<0B.a>4C.a>4或 a<0D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-cos(2ωx+π),其中ω>0.
(1)當ω=1時,求函數(shù)y=f(x)的值域;
(2)若f(x)在區(qū)間[-$\frac{3π}{2}$,$\frac{π}{2}$]上為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知點F為拋物線y2=4x的焦點,該拋物線上位于第四象限的點A到其準線的距離為5,則直線AF的斜率為-$\frac{4}{3}$.

查看答案和解析>>

同步練習冊答案