某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都“合格”則該課程考核“合格”.甲、乙、丙三人在理論考核中合格的概率分別為0.9、0.8、0.7;在實驗考核中合格的概率分別為0.8、0.7、0.9.所有考核是否合格相互之間沒有影響.
(Ⅰ)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(Ⅱ)求這三人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
記“甲理論考核合格”為事件A1
“乙理論考核合格”為事件A2;“丙理論考核合格”為事件A3;
.
Ai
為Ai的對立事件,i=1,2,3;記“甲實驗考核合格”為事件B1;
“乙實驗考核合格”為事件B2;“丙實驗考核合格”為事件B3
(Ⅰ)記“理論考核中至少有兩人合格”為事件C,
P(C)=P(A1A2
.
A3
+A1
.
A2
A3+
.
A1
A2A3+A1A2A3)

=P(A1A2
.
A3
)+P(A1
.
A2
A3)+P(
.
A1
A2A3)+P(A1A2A3)

=0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7+0.9×0.8×0.7
=0.902
∴理論考核中至少有兩人合格的概率為0.902
(Ⅱ)記“三人該課程考核都合格”為事件D
P(D)=P[(A1?B1)?(A2?B2)?(A3?B3)]
=P(A1?B1)?P(A2?B2)?P(A3?B3
=P(A1)?P(B1)?P(A2)?P(B2)?P(A3)?P(B3
=0.9×0.8×0.8×0.8×0.7×0.9
=0.254016
≈0.254
∴這三人該課程考核都合格的概率為0.254
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都“合格”則該課程考核“合格”.甲、乙、丙三人在理論考核中合格的概率分別為0.9、0.8、0.7;在實驗考核中合格的概率分別為0.8、0.7、0.9.所有考核是否合格相互之間沒有影響.
(Ⅰ)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(Ⅱ)求這三人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年新建二中三模文)某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”則該課程考核“合格”,甲、乙、丙三人在理論考核中合格的概率分別為;在實驗考核中合格的概率分別為,所有考核是否合格相互之間沒有影響.

   (Ⅰ)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

   (Ⅱ)求這三人該課程考核都合格的概率.(結(jié)果保留三位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都“合格”則該課程考核“合格”.甲、乙、丙三人在理論考核中合格的概率分別為0.9、0.8、0.7;在實驗考核中合格的概率分別為0.8、0.7、0.9.所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都“合格”則該課程考核“合格”.甲、乙、丙三人在理論考核中合格的概率分別為0.9、0.8、0.7;在實驗考核中合格的概率分別為0.8、0.7、0.9.所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三人該課程考核都合格的概率.(結(jié)果保留三位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某課程考核分理論與實驗兩部分進行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”則該課程考核“合格”,甲、乙、丙三人在理論考核中合格的概率分別為;在實驗考核中合格的概率分別為,所有考核是否合格相互之間沒有影響

(Ⅰ)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(Ⅱ)求這三人該課程考核都合格的概率。(結(jié)果保留三位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案