10.記f(n)=(3n+2)(C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$)(n≥2,n∈N*).
(1)求f(2),f(3),f(4)的值;
(2)當(dāng)n≥2,n∈N*時(shí),試猜想所有f(n)的最大公約數(shù),并證明.

分析 (1)由組合數(shù)的性質(zhì)可得f(n)=(3n+2)Cn+13,代值計(jì)算即可,
(2)由(1)中結(jié)論可猜想所有f(n)的最大公約數(shù)為4.用數(shù)學(xué)歸納法證明所有的f(n)都能被4整除即可.

解答 解:(1)因?yàn)閒(n)=(3n+2)(C22+C32+C42+…+Cn2)=(3n+2)Cn+13,
所以f(2)=8,f(3)=44,f(4)=140.
(2)由(1)中結(jié)論可猜想所有f(n)的最大公約數(shù)為4.
下面用數(shù)學(xué)歸納法證明所有的f(n)都能被4整除即可.
(。┊(dāng)n=2時(shí),f(2)=8能被4整除,結(jié)論成立;                  
(ⅱ)假設(shè)n=k時(shí),結(jié)論成立,即f(k)=(3k+2)Ck+13能被4整除,
則當(dāng)n=k+1時(shí),f(k+1)=(3k+5)Ck+23=(3k+2)Ck+13+3Ck+23=(3k+2)(Ck+13+Ck+12)+(k+2)Ck+12,
=(3k+2)Ck+13+(3k+2)Ck+12+(k+2)Ck+12
=(3k+2)Ck+13+4(k+1)Ck+12,
此式也能被4整除,即n=k+1時(shí)結(jié)論也成立.
綜上所述,所有f(n)的最大公約數(shù)為4.

點(diǎn)評 本題考查數(shù)學(xué)歸納法,考查推理證明的能力,假設(shè)n=k(k∈N*)時(shí)命題成立,去證明則當(dāng)n=k+1時(shí),用上歸納假設(shè)是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集為[-2,2],求實(shí)數(shù)m的值;
(2)對任意x,y∈R,求證:f(x)≤2y+$\frac{4}{{2}^{y}}$+|2x+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{2\sqrt{5}}}{5}$,直線mx+y+1=1恒過橢圓的一個(gè)頂點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),P為橢圓的右焦點(diǎn),過F的直線l(l不與坐標(biāo)軸垂直)交橢圓于A,B兩點(diǎn),C為AB的中點(diǎn),D為A關(guān)于x軸的對稱點(diǎn).
(i)求證:直線OC與過點(diǎn)F且與l垂直的直線的交點(diǎn)在直線x=$\frac{5}{2}$上;
(ii)在x軸上是否存在定點(diǎn)T,使B、D、T三點(diǎn)共線?若存在,求出T點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x+alnx(a∈R).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處與直線y=3x-2相切,求a的值;
(2)函數(shù)g(x)=f(x)-kx2有兩個(gè)零點(diǎn)x1,x2,試判斷$g'({\frac{{{x_1}+{x_2}}}{2}})$的符號(hào),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)10個(gè)紅包,每個(gè)紅包金額在[1,5]產(chǎn)生.已知在每輪游戲中所產(chǎn)生的10個(gè)紅包金額的頻率分布直方圖如圖所示.
(Ⅰ)求a的值,并根據(jù)頻率分布直方圖,估計(jì)10個(gè)紅包金額的中位數(shù);
(Ⅱ)以頻率分布直方圖中的頻率作為概率,若甲搶到來自[2,4)中3個(gè)紅包,求其中一個(gè)紅包來自[2,3),另2個(gè)紅包來自[3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,長軸長為4,過橢圓的左頂點(diǎn)A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q.
(1)若直線l的斜率為$\frac{1}{2}$,求$\frac{AP}{AQ}$的值;
(2)若$\overrightarrow{PQ}$=λ$\overrightarrow{AP}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在五面體ABCDE中,AD⊥平面ABC,AD∥BE∥CF,△ABC為等邊三角形,AB=2$\sqrt{3}$,BE=2,AD=3,CF=4,M為EF的中點(diǎn).
(Ⅰ)求證:DM∥平面ABC;
(Ⅱ)求直線CD與平面DEF所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知非零向量$\overrightarrow{AB}$,$\overrightarrow{AC}$滿足($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,則△ABC的形狀是( 。
A.三邊均不相等的三角形B.直角三角形
C.等腰(非等邊)三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若a2=4,且Sn=an+1-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式:
(Ⅱ)若cn=-20+log2a4n,求{cn}的前n項(xiàng)和Tn的最小值.

查看答案和解析>>

同步練習(xí)冊答案