已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)學(xué)公式,求證:Tn<3.

(Ⅰ)解:設(shè)d、q分別為等差數(shù)列{an}、等比數(shù)列{bn}的公差與公比,且d>0
由a1=1,a2=1+d,a3=1+2d,分別加上1,1,3有b1=2,b2=2+d,b3=4+2d…(2分)
∵數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng)
∴(2+d)2=2(4+2d),∴d2=4,
∵d>0,∴d=2,∴…(4分)
…(6分)
(II)證明:,①
.②
①-②,得.…(8分)
.…(10分)
.∴…(12分)
分析:(Ⅰ)利用數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng),建立方程,求出公差與公比,即可得到數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)利用錯(cuò)位相減法求出數(shù)列的和,即可證得結(jié)論.
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合,考查數(shù)列的通項(xiàng)與求和,考查不等式的證明,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案