19.過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,點O是原點,若A點到準線的距離為3,則△AOB的面積為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.2$\sqrt{2}$

分析 設∠AFx=θ(0<θ<π,由點A到準線l:x=-1的距離為3易得|AF|=3,從而cosθ=$\frac{1}{3}$,進而可求|BF|,|AB|,由此可求AOB的面積

解答 解:設∠AFx=θ(0<θ<π)及|BF|=m,
∵|AF|=3,
∴點A到準線l:x=-1的距離為3,
∴2+3cosθ=3,cosθ=$\frac{1}{3}$,
∵m=2+mcos(π-θ)⇒m=$\frac{3}{2}$,
∴△AOB的面積為S=$\frac{1}{2}$×|OF|×|AB|×sinθ=$\frac{1}{2}×1×(3+\frac{3}{2})×\frac{2\sqrt{2}}{3}=\frac{3\sqrt{2}}{2}$.
故選:C.

點評 本題考查拋物線的定義,考查三角形的面積的計算,確定拋物線的弦長是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.若冪函數(shù)y=f(x)的圖象經(jīng)過點$(4,\frac{1}{2})$,則f(9)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合M={x|x2-2x-3=0},P={x|ax-1=0},若P?M,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.變量x,y滿足約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,則目標函數(shù)z=3x-y的取值范圍是( 。
A.[-$\frac{3}{2}$,6]B.[-$\frac{3}{2}$,-1]C.[-1,6]D.[-6,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.一個平面將空間分成2部分;兩個平面將空間分成3或4部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.經(jīng)過圓x2+y2=2x的圓心且與直線y=2x平行的直線方程為2x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.對于函數(shù)f(x)=lnx的定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
上述結(jié)論中正確結(jié)論的序號是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.滿足{3}∪A={1,3,5}的集合A可以是{1,5}或{1,3,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|a≤x≤a+9},B={x|8-b<x<b},M={x|x<-1,或x>5},
(1)若A∪M=R,求實數(shù)a的取值范圍;
(2)若B∪(∁RM)=B,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案