在正方體ABCD-A1B1C1D1中,二面角A1-BD-C1的余弦值為(  )
A.B.C.D.
D
設(shè)正方體棱長為1,建立如圖所示的空間直角坐標(biāo)系Dxyz,

易知A1E⊥BD,C1E⊥BD,
則∠A1EC1是二面角A1-BD-C1的平面角,=(,-,1),
=(-,,1),cos<,>=.
【方法技巧】求二面角的策略
(1)法向量法.其步驟是:①建系;②分別求構(gòu)成二面角的兩個(gè)半平面的法向量;③求法向量夾角的余弦值;④根據(jù)題意確定二面角的余弦值或其大小.
(2)平面角法.該法就是首先利用二面角的定義,找出二面角的平面角,然后用向量法或解三角形法求其余弦值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,

(1)求異面直線所成角的大;
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是直角梯形,平面,,分別為,的中點(diǎn),

(1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中點(diǎn).

(1)求證:平面BED⊥平面SAB.
(2)求直線SA與平面BED所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在圓錐PO中,已知PO=,☉O的直徑AB=2,C是的中點(diǎn),D為AC的中點(diǎn).

求證:平面POD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA底面ABCD,且SA=2,AD=DC=1

(1)若點(diǎn)E在SD上,且證明:平面
(2)若三棱錐S-ABC的體積,求面SAD與面SBC所成二面角的正弦值的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F(xiàn)為底面圓周上一點(diǎn),滿足EF⊥DE.

(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A(1,0,0),B(0,1,0),C(0,0,1),則平面ABC的一個(gè)單位法向量是(  )
A.(,,-)B.(,-,)C.(-,,)D.(-,-,-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在空間直角坐標(biāo)系中有直三棱柱ABC­A1B1C1,CACC1=2CB,則直線BC1與直線AB1夾角的余弦值為(  ).
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案