平行六面體ABCD=A1B1C1D1中,AB=1,AD=2,AA1=3.∠BAD=90°,∠BAA1=∠DAA1=60°
求AC1的長.
分析:觀察圖形及題設(shè)條件,可構(gòu)造出與AC1有關(guān)的三角形然后利用三角形求此線段的長度,由題設(shè)條件可以證出AA1在底面上的射影是角BAD的角平分線,由幾何體的幾何特征知,CC1在底面上的射影在BC,DC的所組成的角的角平分線上,且此垂足到C的距離與點(diǎn)A1在底面的垂足O到A的距離相,故可依據(jù)題設(shè)條件求出點(diǎn)O到AB,AD的距離,即求得圖中HR,CR的長度,補(bǔ)出如圖的圖形,在直角三角形中即可求出AC1的長
解答:解:由題意,如圖,作A1O⊥底面于O,作OE垂直AB于E,OF垂直AD于F,連接A1F,A1E,
由于,∠BAA1=∠DAA1=60°,故有△A1FA≌△A1EA,即A1F=A1E
從而有△A1FO≌△A1EO,即有OF=OE,由作圖知,O在角DAB的角平分線上,
又底面是矩形,故角DAO=角BAO=45°,
又AB=1,AD=2,AA1=3,∠BAA1=∠DAA1=60°,
∴A1F=A1E=
3
3
2
,AE=AF=
3
2
,于是有AO=
3
2
2
,
在直角三角形A1OA中,解得A1O=
3
2
2

在圖中作C1H垂直底面于H,作HR垂直DC延長線與R,由幾何體的性質(zhì)知,HR=CR=
3
2
,A1O=C1H=
3
2
2

連接AH,得如圖的直角三角形ASH,直角三角形AHC1,由已知及上求解得AS=
5
2
,SH=
7
2

∴AC12=AH2+C1H2=AS2+SH2+C1H2=
25
4
+
49
4
+
18
4
=
92
4
=23
∴AC1=
23
點(diǎn)評(píng):本題主要考查了體對(duì)角線的求解,同時(shí)考查了空間想象能力,計(jì)算推理的能力,本題解題的關(guān)鍵是有著較強(qiáng)的空間感知能力以及根據(jù)題設(shè)條件構(gòu)造圖形的能力,本題是一個(gè)創(chuàng)造型題,作出恰當(dāng)?shù)妮o助線對(duì)求解本題很重要,本題是立體幾何中綜合性較強(qiáng)的題,解題中用到了間接法的技巧,通過求點(diǎn)A1到底面的距離求出點(diǎn)C1到底面的距離
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB,AD,AA1的夾角都是60° 則
AC1
BD1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1(底面是平行四邊形的四棱柱)
①求證:平面AB1D1∥平面BDC1;
②若平行六面體ABCD-A1B1C1D1各棱長相等且AB⊥平面BCC1B1,E為CD的中點(diǎn),AC1∩BD1=0,求證:OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南充模擬)平行六面體ABCD-A1B1C1D1的六個(gè)面都是菱形,則點(diǎn)D1在面ACB1上的射影是△ACB1 的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖已知平行六面體ABCD-A′B′C′D′,E、F、G、H分別是棱A′D′、D′C′、C′C和AB的中點(diǎn),求證E、F、G、H四點(diǎn)共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長為1的正方形,若A1AB=∠A1AD=600,且A1A=3,則A1C的長為
 

查看答案和解析>>

同步練習(xí)冊答案