6.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2\sqrt{2},|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a•\overrightarrow b=1$,則$|{\overrightarrow a-2\overrightarrow b}|$=( 。
A.$2\sqrt{3}$B.12C.$2\sqrt{2}$D.8

分析 根據(jù)條件,進行數(shù)量積的運算即可求出$(\overrightarrow{a}-2\overrightarrow)^{2}$的值,進而便可得出$|\overrightarrow{a}-2\overrightarrow|$的值.

解答 解:$(\overrightarrow{a}-2\overrightarrow)^{2}={\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$
=8-4+8
=12;
∴$|\overrightarrow{a}-2\overrightarrow|=2\sqrt{3}$.
故選A.

點評 考查數(shù)量積的計算公式,以及求$|\overrightarrow{a}-2\overrightarrow|$而先求$(\overrightarrow{a}-2\overrightarrow)^{2}$的方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.有關(guān)部門為了了解霧霾知識在學校的普及情況,印制了若干份滿分為10分的問卷到各學校做調(diào)查.某中學A,B兩個班各被隨機抽取5名學生進行問卷調(diào)查,得分如下:
A班(單位:分)58999
B班(單位:分)678910
(1)請計算A,B兩個班的平均分,并估計哪個班的問卷得分要穩(wěn)定一些;
(2)如果把B班5名學生的得分看成一個總體,并用簡單隨機抽樣從中抽取樣本容量為2的樣本,求樣本的平均數(shù)與總體平均數(shù)之差的絕對值不小于1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若實數(shù)x,y滿足|x|-ln $\frac{1}{y}$=0,則y關(guān)于x的函數(shù)的圖象形狀大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.函數(shù)y=$\frac{1}{4}$•2x和y=$\frac{1}{3}$x2的圖象如圖所示,其中有且只有x=x1、x2、x3時,兩函數(shù)值相等,且x1<0<x2<x3,O為坐標原點.
(Ⅰ)請指出圖中曲線C1、C2分別對應的函數(shù);
(Ⅱ)請判斷以下兩個結(jié)論是否正確,并說明理由.
①當x∈(-∞,-1)時,$\frac{1}{4}$•2x<$\frac{1}{3}$x2;
②x2∈(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-4x+(2-a)lnx(a∈R且 a≠0).
(1)當a=8時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)求函數(shù)f(x)在區(qū)間[e,e2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某重點高中擬把學校打造成新型示范高中,為此制定了很多新的規(guī)章制度,新規(guī)章制度實施一段時間后,學校就新規(guī)章制度的認知程度隨機抽取100名學生進行問卷調(diào)查,調(diào)查卷共有20個問題,每個問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名學生的成績都在[75,100]內(nèi),按成績分成5組:第1組[75,80),第2組[80,85)第3組[85,90),第4組[90,95),第5組[95,100],繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙上分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對新規(guī)取章制度作深入學習.
(1)求這100人的平均得分(同-組數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)求第3,4,5組分別選取的人數(shù);
(3)若甲、乙、丙都被選取對新規(guī)章制度作深人學習,之后要從這6人隨機選取人2再全面考查他們對新規(guī)章制度的認知程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(cosβ,sinβ),0<α<β<2π.
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求|$\overrightarrow{a}$-2$\overrightarrow$|的值;
(2)設(shè)向量$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$+2$\overrightarrow$=$\overrightarrow{c}$,求α、β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知命題p:?x∈R,x<-1,則該命題的否定是¬p:?x∈R,x≥-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2$\sqrt{5}$,且雙曲線的一條漸近線與直線2x+y=0垂直,則雙曲線的頂點到漸近線的距離為( 。
A.1B.2C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

同步練習冊答案