【題目】已知函數(shù),其中為常數(shù).

若曲線處的切線在兩坐標(biāo)軸上的截距相等,求的值;

若對(duì),都有,求的取值范圍.

【答案】

【解析】

(1)求出切點(diǎn)坐標(biāo),寫(xiě)出切線方程,利用切線在兩坐標(biāo)軸上的截距相等,求得a即可.

(2)對(duì)a分類(lèi)討論,易判斷當(dāng)或當(dāng)時(shí),在區(qū)間內(nèi)是單調(diào)的,根據(jù)單調(diào)性得出結(jié)論,當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,,又因?yàn)?/span>,成立.的最大值為,將最大值構(gòu)造新函數(shù),通過(guò)導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后求解結(jié)果.

求導(dǎo)得,所以.

,所以曲線處的切線方程為.

由切線在兩坐標(biāo)軸上的截距相等,得,解得即為所求.

對(duì),所以區(qū)間內(nèi)單調(diào)遞減.

當(dāng)時(shí),,所以在區(qū)間內(nèi)單調(diào)遞減,故,由恒成立,得,這與矛盾,故舍去.

當(dāng)時(shí),,所以在區(qū)間內(nèi)單調(diào)遞增,故,即,由恒成立得,結(jié)合.

當(dāng)時(shí),因?yàn)?/span>,,且區(qū)間上單調(diào)遞減,結(jié)合零點(diǎn)存在定理可知,存在唯一,使得,且在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.

,由恒成立知,,所以.

的最大值為,由,

所以.

設(shè),則,所以在區(qū)間內(nèi)單調(diào)遞增,于是,即.所以不等式恒成立.

綜上所述,所求的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知標(biāo)準(zhǔn)方程下的橢圓的焦點(diǎn)在軸上,且經(jīng)過(guò)點(diǎn),它的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.橢圓的上頂點(diǎn)為過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),連接、,記直線的斜率分別為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好;單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計(jì)

學(xué)習(xí)雷鋒精神前

50

150

200

學(xué)習(xí)雷鋒精神后

30

170

200

總 計(jì)

80

320

400

(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?

(2)請(qǐng)說(shuō)明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

1求直線的普通方程與圓的直角坐標(biāo)方程

2設(shè)曲線與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶(hù)籍人口400萬(wàn),其中老人(年齡60歲及以上)人數(shù)約有66萬(wàn),為了了解老人們的健康狀況,政府從老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以80歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:

1)若采用分層抽樣的方法再?gòu)臉颖局械牟荒茏岳淼睦先酥谐槿?/span>8人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?

2)估算該市80歲及以上長(zhǎng)者占全市戶(hù)籍人口的百分比;

3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶(hù)籍老人無(wú)固定收入,政府計(jì)劃為這部分老人每月發(fā)放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:

①80歲及以上長(zhǎng)者每人每月發(fā)放生活補(bǔ)貼200元;

②80歲以下老人每人每月發(fā)放生活補(bǔ)貼120元;

③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100元.

利用樣本估計(jì)總體,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.(單位:億元,結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點(diǎn), 上任意一點(diǎn).

1)證明:平面平面

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線 與拋物線 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).

(1)若直線與拋物線交于點(diǎn), ,且,求;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷(xiāo)售甲、乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),甲產(chǎn)品的利潤(rùn)(萬(wàn)元)與投資額(萬(wàn)元)成正比,其關(guān)系如圖所示;乙產(chǎn)品的利潤(rùn)(萬(wàn)元)與投資額(萬(wàn)元)的算術(shù)平方根成正比,其關(guān)系式如圖所示.

1)分別將甲、乙兩種產(chǎn)品的利潤(rùn)表示為投資額的函數(shù);

2)若該公司投資萬(wàn)元資金,并全部用于甲、乙兩種產(chǎn)品的營(yíng)銷(xiāo),問(wèn):怎樣分配這萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案