分析 建立空間直角坐標(biāo)系,根據(jù)各邊的長度列方程求出棱錐的高.
解答 解:以B為原點建立如圖所示的空間坐標(biāo)系,
則AB=CD=1,AD=BC=$\sqrt{3}$,∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}=2$.BD=$\frac{\sqrt{7}}{2}$.
∴A(-1,0,0),B(0,0,0),C(0,$\sqrt{3}$,0).
設(shè)D(x,y,z),則$\left\{\begin{array}{l}{(x+1)^{2}+{y}^{2}+{z}^{2}=3}\\{{x}^{2}+{y}^{2}+{z}^{2}=\frac{7}{4}}\\{{x}^{2}+(y-\sqrt{3})^{2}+{z}^{2}=1}\end{array}\right.$,解得z=$\frac{3}{4}$.
∴三棱錐D-ABC的高h(yuǎn)=$\frac{3}{4}$.
∴三棱錐的體積V=$\frac{1}{3}×\frac{1}{2}×AB×BC×h$=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\frac{3}{4}$=$\frac{\sqrt{3}}{8}$.
故答案為:$\frac{\sqrt{3}}{8}$.
點評 本題考查了棱錐的體積計算,求出棱錐的高是解題關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | (-2,2) | C. | (-1,2) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com