12.若$\overrightarrow a=(2cosα,1)$,$\overrightarrow b=(sinα,1)$,且$\overrightarrow a∥\overrightarrow b$,則tanα=( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

分析 利用向量共線定理、同角三角函數(shù)基本關系式即可得出.

解答 解:∵$\overrightarrow a∥\overrightarrow b$,∴sinα=2cosα,cosα≠0.
則tanα=2.
故選:A.

點評 本題考查了向量共線定理、同角三角函數(shù)基本關系式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)y=ksin(kx+φ)(k>0,|φ|<$\frac{π}{2}$)與函數(shù)y=kx-k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx-φ)+cos(kx-φ)圖象的一條對稱軸的方程可以為(  )
A.x=-$\frac{π}{24}$B.x=$\frac{37π}{24}$C.x=$\frac{17π}{24}$D.x=-$\frac{13π}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.不等式(2-a)x2-2(a-2)+4>0對于一切實數(shù)都成立,則( 。
A.{a|-2<a≤2}B.{a|-2<a<2}C.{a|a<-2}D.{a|a<-2或a>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=(1+x)2-2ln(1+x).
(Ⅰ)對任意x0∈[0,1],不等式f(x0)-m≤0恒成立,求實數(shù)m的最小值;
(Ⅱ)若存在x0∈[0,1],使不等式f(x0)-m≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在區(qū)間[0,9]內任取兩個數(shù),則這兩個數(shù)的平方和也在[0,9]內的概率為$\frac{π}{36}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為( 。
A.$\stackrel{∧}{y}$=1.23x+5B.$\stackrel{∧}{y}$=1.23x+4C.$\stackrel{∧}{y}$=0.08x+1.23D.$\stackrel{∧}{y}$=1.23x+0.08

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列命題的正確的是(  )
A.若直線 l上有無數(shù)個點不在平面 α內,則  l∥α
B.若直線 l與平面α平行,則l與平面α內的任意一條直線都平行
C.如果兩條平行直線中的一條與一個平面α平行,那么另一條也與這個平面平行.
D.若直線l與平面α平行,則l與平面α內的任意一條直線都沒有公共點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設冪函數(shù)f(x)=(m+3)xm,則f(2)-f(-2)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x)(a>0,且a≠1).設F(x)=f(x)+g(x),G(x)=f(x)-g(x),解決下列問題:
(1)求函數(shù)F(x)的定義域;
(2)證明F(x)為偶函數(shù);并求F(x)的值域;
(3)證明G(x)為奇函數(shù);并判斷函數(shù)G(x)的單調性.

查看答案和解析>>

同步練習冊答案