精英家教網 > 高中數學 > 題目詳情
某單位要在甲、乙、丙、丁4人中安排2人分別擔任周六、周日的值班任務(每人被安排是等可能的,每天只安排一人).
(Ⅰ)共有多少種安排方法?
(Ⅱ)其中甲、乙兩人都被安排的概率是多少?
(Ⅲ)甲、乙兩人中至少有一人被安排的概率是多少?
(Ⅰ)安排情況如下:
甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙∴共有12種安排方法. …(4分)
(Ⅱ)甲、乙兩人都被安排的情況包括:“甲乙”,“乙甲”兩種,∴甲、乙兩人都被安排(記為事件A)的概率:P(A)=
2
12
=
1
6
…(8分)
(Ⅲ)解法1:“甲、乙兩人中至少有一人被安排”與“甲、乙兩人都不被安排”這兩個事件是互斥事件,∵甲、乙兩人都不被安排的情況包括:“丙丁”,“丁丙”兩種,
則“甲、乙兩人都不被安排”的概率為 
2
12
=
1
6
∴甲、乙兩人中至少有一人被安排(記為事件B)的概率:P(B)=1-
1
6
=
5
6
.                             …(12分)
解法2:甲、乙兩人中至少有一人被安排的情況包括:
“甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙”共10種,∴甲、乙兩人中至少有一人被安排(記為事件B)的概率:P(B)=
10
12
=
5
6
.                              …(12分)
(注:如果有學生會排列概念,如下求解,(Ⅰ)A42=12;(Ⅱ)P(A)=
A22
A24
=
2
12
=
1
6
;(Ⅲ)P(B)=1-
1
6
=
5
6
,給滿分).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某單位要在甲、乙、丙、丁4人中安排2人分別擔任周六、周日的值班任務(每人被安排是等可能的,每天只安排一人).
(Ⅰ)寫出所有的基本事件;
(Ⅱ)求甲、乙兩人中至少有一人被安排的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•深圳一模)某單位要在甲、乙、丙、丁4人中安排2人分別擔任周六、周日的值班任務(每人被安排是等可能的,每天只安排一人).
(Ⅰ)共有多少種安排方法?
(Ⅱ)其中甲、乙兩人都被安排的概率是多少?
(Ⅲ)甲、乙兩人中至少有一人被安排的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

某單位要在甲、乙、丙、丁4人中安排2人分別擔任周六、周日的值班任務(每人被安排是等可能的,每天只安排一人).其中甲、乙兩人都被安排的概率是
1
6
1
6

查看答案和解析>>

科目:高中數學 來源: 題型:

某單位要在甲、乙、丙、丁人中安排人分別擔任周六、周日的值班任務(每人被安排是等可能的,每天只安排一人).其中甲、乙兩人都被安排的概率是__ _ ____ _ ___.

查看答案和解析>>

科目:高中數學 來源:2013屆廣東省實驗學校高二下期中理科數學試卷A(解析版) 題型:解答題

某單位要在甲、乙、丙、丁4人中安排2人分別擔任周六、周日的值班任務(每人被安排是等可能的,每天只安排一人).

(1)共有多少種安排方法?

(2)其中甲、乙兩人都被安排的概率是多少?

(3)甲、乙兩人中至少有一人被安排的概率是多少?

 

查看答案和解析>>

同步練習冊答案