如圖,已知橢圓的離心率分別為橢圓C的左、右焦點,A(0,b),且過左焦點F1作直線l交橢圓于P1、P2兩點.
(1)求橢圓C的方程
(2)若直線l的似斜角與橢圓的左準線分別交于點S、T,求[ST]的取值范圍.
科目:高中數學 來源: 題型:
(本小題滿分12分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2012屆山西大學附中高三4月月考理科數學試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2013屆廣東省高二下期中文科數學試卷(解析版) 題型:解答題
如圖,已知橢圓的離心率為,且經過點平行于的直線在軸上的截距為,與橢圓有A、B兩個
不同的交點
(Ⅰ) 求橢圓的方程;
(Ⅱ) 求的取值范圍;
(III)求證:直線、與軸始終圍成一個等腰三角形.
查看答案和解析>>
科目:高中數學 來源:2013屆福建省高二上學期期末考試理科數學試卷 題型:解答題
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2010年高考試題(山東卷)解析版(理) 題型:解答題
如圖,已知橢圓的離心率
為,以該橢圓上的點和橢圓的左、右焦點
為頂點的三角形的周長為,一等軸雙曲線
的頂點是該橢圓的焦點,設P為該雙曲線上異于項點
的任一點,直線和與橢圓的交點分別為A、
B和C、D.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明:;
(Ⅲ)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com