15.在△ABC中,sin2A≥sin2B+sin2C-sinBsinC,則∠A的取值范圍是( 。
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.[$\frac{π}{6}$,π)D.[$\frac{π}{3}$,π)

分析 利用正弦定理化簡已知的不等式,再利用余弦定理表示出cosA,將得出的不等式變形后代入表示出的cosA中,得出cosA的范圍,由A為三角形的內(nèi)角,根據(jù)余弦函數(shù)的圖象與性質(zhì)即可求出A的取值范圍.

解答 解:由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC,
∵sin2A≥sin2B+sin2C-sinBsinC,
∴a2≥b2+c2-bc,
∴bc≥b2+c2-a2,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$$≤\frac{1}{2}$,
∴A$≥\frac{π}{3}$.
∵A<π,
∴A的取值范圍是[$\frac{π}{3},π$).
故選:D.

點(diǎn)評 本題主要考查了正弦定理和余弦定理的應(yīng)用.作為解三角形中常用的兩個定理,考生應(yīng)能熟練記憶,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的各項(xiàng)均為正數(shù),bn=n(1+$\frac{1}{n}$)nan(n∈N+),e為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)=1+x-ex的單調(diào)區(qū)間,并比較(1+$\frac{1}{n}$)n與e的大;
(2)計算$\frac{_{1}}{{a}_{1}}$,$\frac{_{1}_{2}}{{a}_{1}{a}_{2}}$,$\frac{_{1}{_{2}b}_{3}}{{a}_{1}{a}_{2}{a}_{3}}$,由此推測計算$\frac{_{1}_{2}…_{n}}{{a}_{1}{a}_{2}…{a}_{n}}$的公式,并給出證明;
(3)令cn=(a1a2…an)${\;}^{\frac{1}{n}}$,數(shù)列{an},{cn}的前n項(xiàng)和分別記為Sn,Tn,證明:Tn<eSn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,所有棱長都相等,若該三棱柱的頂點(diǎn)都在球O的表面上,且球O的表面積為7π,則三棱柱ABC-A1B1C1的體積為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在[t,+∞)上的函數(shù)f(x)、g(x)單調(diào)遞增,f(t)=g(t)=M,若對任意k>M存在x1<x2,使得f(x1)=g(x2)=k成立,則稱g(x)是f(x)在[t,+∞)上的“追逐函數(shù)”,已知f(x)=x2,給出下列四個函數(shù):
①g(x)=x;
②g(x)=lnx+1;
③g(x)=2x-1;
④g(x)=2-$\frac{1}{x}$;
其中f(x)在[1,+∞)上的“追逐函數(shù)”有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y∈R,滿足$\left\{\begin{array}{l}{(x-1)^{5}+2x+sin(x-1)=3}\\{(y-1)^{5}+2y+sin(y-1)=1}\end{array}\right.$,則x+y=( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-1|+|x+1|.
(1)求不等式f(x)≥3的解集;
(2)若關(guān)于x的不等式f(x)>a2-x2+2x在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知甲,乙兩名運(yùn)動員的罰球命中率分別為0.8和0.6,甲在無人防守下上籃命中率為0.95,已知罰球中一球得1分,上籃命中得2分.
(1)若兩人各罰兩次球,求一共罰中2次的概率;
(2)假若在一場比賽中甲獲得一次無人防守的上籃機(jī)會,此時防守球員無法形成有效防守,只能選擇犯規(guī)或什么都不做,假設(shè)防守球員犯規(guī),甲球員仍然有$\frac{1}{5}$的概率命中此球,若命中得到2分并追加一次罰球,若在防守球員犯規(guī)的情況下甲沒有命中,則甲罰球兩次,問此時防守球員應(yīng)不應(yīng)該犯規(guī)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若a,b∈(0,2),則函數(shù)f(x)=$\frac{1}{3}$ax3+2x2+4bx+1存在極值的概率為( 。
A.$\frac{1+2ln2}{4}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z=x+yi(x,y∈R),且有$\frac{x}{i-1}$=1+yi,$\overline z$是z的共軛復(fù)數(shù),那么$\frac{1}{\overline{z}}$的虛部為( 。
A.-$\frac{1}{5}$iB.$\frac{1}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$i

查看答案和解析>>

同步練習(xí)冊答案