16.已知點A($\sqrt{3}$,1),B(3$\sqrt{3}$,-1),則直線AB的傾斜角是( 。
A.60°B.30°C.120°D.150°

分析 先求出直線AB的斜率k,設(shè)傾斜角θ,根據(jù)斜率的定義得到tanθ=k.

解答 解:設(shè)直線的傾斜角為θ,而直線AB的斜率k=$\frac{-1-1}{3\sqrt{3}-\sqrt{3}}$=-$\frac{\sqrt{3}}{3}$,根據(jù)斜率的定義得:tanθ=k
即tanθ=-$\frac{\sqrt{3}}{3}$,
∵0°<θ<180°,
∴θ=150°.
故選:D.

點評 考查學生會根據(jù)兩點求直線斜率,理解直線的斜率等于傾斜角的正切值,以及靈活運用反函數(shù)根據(jù)函數(shù)值求角度.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知各項均為正數(shù)的數(shù)列{an}滿足:an+12=tan2+(t-1)anan+1,其中n∈N*
(1)若a2-a1=8,a3=a,且數(shù)列{an}是唯一的.
①求a的值;
②設(shè)數(shù)列{bn}滿足bn=$\frac{{n{a_n}}}{{4(2n+1){2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n和為Sn,a1=1,Sn=nan-2n2+2n(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達式;
(2)是否存在自然數(shù)n,使得S1+$\frac{S_2}{2}$+$\frac{S_3}{3}$+…+$\frac{S_n}{n}$+2n=1124?若存在,求出n的值; 若不存在,請說明理由;
(3)設(shè)cn=$\frac{2}{{n({{a_n}+7})}}$(n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn>$\frac{m}{32}$(m∈Z),對n∈N*恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知G點為△ABC的重心,且滿足BG⊥CG,若$\frac{1}{tanB}$+$\frac{1}{tanC}$=$\frac{λ}{tanA}$,則實數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,a,b,c分別是角A,B,C的對邊,$\overrightarrow m$=(cosA+2sinA,-3sinA),$\overrightarrow n$=(sinA,cosA-2sinA),
(1)若$\overrightarrow m$∥$\overrightarrow n$且角A為銳角,求角A的大。
(2)在(1)的條件下,若cosB=$\frac{4}{5}$,c=7,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$\frac{3}{lo{g}_{2}a}$+$\frac{2}{lo{g}_{3}a}$=2,則a=$6\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,且Sn=2n+1-2,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項an和bn
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn,并求滿足Tn<55的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知sinx=$\frac{4}{5}$,且x是第一象限角,則cosx=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖三角形,AB=1,AC=$\sqrt{7}$,cosA=$\frac{{2\sqrt{7}}}{7}$,則三角形繞著AB旋轉(zhuǎn)一周得到的幾何體的體積為π.

查看答案和解析>>

同步練習冊答案