如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點(diǎn)A、B在l1上,C在l2上,AM=MB=MN.

(1)證明AC⊥NB;

(2)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

(1)證明:由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.

由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.

又AN為AC在平面ABN內(nèi)的射影.

∴AC⊥NB.

(2)解:∵Rt△CNA≌Rt△CNB,∴AC=BC.

又已知∠ACB=60°,因此△ABC為正三角形.

∵Rt△ANB≌Rt△CNB,

∴NC=NA=NB.

因此N在平面ABC內(nèi)的射影H是正三角形ABC的中心,連結(jié)BH,∠NBH為NB與平面ABC所成的角.

在Rt△NHB中,cos∠NBH=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點(diǎn)A、B在l1上,C在l2上,AM=MB=MN.
(Ⅰ)證明AC⊥NB;
(Ⅱ)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點(diǎn)A、B在l1上,C在l2上,AM=MB=MN,
(Ⅰ)證明:AC⊥NB;
(Ⅱ)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點(diǎn)A、B在l1上,C在l2上,AM=MB=MN.

(Ⅰ)證明AC⊥NB;

(Ⅱ)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷Ⅰ(理科)(解析版) 題型:解答題

如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點(diǎn)A、B在l1上,C在l2上,AM=MB=MN.
(Ⅰ)證明AC⊥NB;
(Ⅱ)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案